Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\sqrt{6x-1}=9+\sqrt{5x+4}
Tenglamaning ikkala tarafidan -\sqrt{5x+4} ni ayirish.
\left(\sqrt{6x-1}\right)^{2}=\left(9+\sqrt{5x+4}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
6x-1=\left(9+\sqrt{5x+4}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{6x-1} ga hisoblang va 6x-1 ni qiymatni oling.
6x-1=81+18\sqrt{5x+4}+\left(\sqrt{5x+4}\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(9+\sqrt{5x+4}\right)^{2} kengaytirilishi uchun ishlating.
6x-1=81+18\sqrt{5x+4}+5x+4
2 daraja ko‘rsatkichini \sqrt{5x+4} ga hisoblang va 5x+4 ni qiymatni oling.
6x-1=85+18\sqrt{5x+4}+5x
85 olish uchun 81 va 4'ni qo'shing.
6x-1-\left(85+5x\right)=18\sqrt{5x+4}
Tenglamaning ikkala tarafidan 85+5x ni ayirish.
6x-1-85-5x=18\sqrt{5x+4}
85+5x teskarisini topish uchun har birining teskarisini toping.
6x-86-5x=18\sqrt{5x+4}
-86 olish uchun -1 dan 85 ni ayirish.
x-86=18\sqrt{5x+4}
x ni olish uchun 6x va -5x ni birlashtirish.
\left(x-86\right)^{2}=\left(18\sqrt{5x+4}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
x^{2}-172x+7396=\left(18\sqrt{5x+4}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-86\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-172x+7396=18^{2}\left(\sqrt{5x+4}\right)^{2}
\left(18\sqrt{5x+4}\right)^{2} ni kengaytirish.
x^{2}-172x+7396=324\left(\sqrt{5x+4}\right)^{2}
2 daraja ko‘rsatkichini 18 ga hisoblang va 324 ni qiymatni oling.
x^{2}-172x+7396=324\left(5x+4\right)
2 daraja ko‘rsatkichini \sqrt{5x+4} ga hisoblang va 5x+4 ni qiymatni oling.
x^{2}-172x+7396=1620x+1296
324 ga 5x+4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-172x+7396-1620x=1296
Ikkala tarafdan 1620x ni ayirish.
x^{2}-1792x+7396=1296
-1792x ni olish uchun -172x va -1620x ni birlashtirish.
x^{2}-1792x+7396-1296=0
Ikkala tarafdan 1296 ni ayirish.
x^{2}-1792x+6100=0
6100 olish uchun 7396 dan 1296 ni ayirish.
x=\frac{-\left(-1792\right)±\sqrt{\left(-1792\right)^{2}-4\times 6100}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -1792 ni b va 6100 ni c bilan almashtiring.
x=\frac{-\left(-1792\right)±\sqrt{3211264-4\times 6100}}{2}
-1792 kvadratini chiqarish.
x=\frac{-\left(-1792\right)±\sqrt{3211264-24400}}{2}
-4 ni 6100 marotabaga ko'paytirish.
x=\frac{-\left(-1792\right)±\sqrt{3186864}}{2}
3211264 ni -24400 ga qo'shish.
x=\frac{-\left(-1792\right)±36\sqrt{2459}}{2}
3186864 ning kvadrat ildizini chiqarish.
x=\frac{1792±36\sqrt{2459}}{2}
-1792 ning teskarisi 1792 ga teng.
x=\frac{36\sqrt{2459}+1792}{2}
x=\frac{1792±36\sqrt{2459}}{2} tenglamasini yeching, bunda ± musbat. 1792 ni 36\sqrt{2459} ga qo'shish.
x=18\sqrt{2459}+896
1792+36\sqrt{2459} ni 2 ga bo'lish.
x=\frac{1792-36\sqrt{2459}}{2}
x=\frac{1792±36\sqrt{2459}}{2} tenglamasini yeching, bunda ± manfiy. 1792 dan 36\sqrt{2459} ni ayirish.
x=896-18\sqrt{2459}
1792-36\sqrt{2459} ni 2 ga bo'lish.
x=18\sqrt{2459}+896 x=896-18\sqrt{2459}
Tenglama yechildi.
\sqrt{6\left(18\sqrt{2459}+896\right)-1}-\sqrt{5\left(18\sqrt{2459}+896\right)+4}=9
\sqrt{6x-1}-\sqrt{5x+4}=9 tenglamasida x uchun 18\sqrt{2459}+896 ni almashtiring.
9=9
Qisqartirish. x=18\sqrt{2459}+896 tenglamani qoniqtiradi.
\sqrt{6\left(896-18\sqrt{2459}\right)-1}-\sqrt{5\left(896-18\sqrt{2459}\right)+4}=9
\sqrt{6x-1}-\sqrt{5x+4}=9 tenglamasida x uchun 896-18\sqrt{2459} ni almashtiring.
99-2\times 2459^{\frac{1}{2}}=9
Qisqartirish. x=896-18\sqrt{2459} qiymati bu tenglamani qoniqtirmaydi, chunki oʻng va chap tarafdagi belgilar bir-biriga qarama-qarshi.
\sqrt{6\left(18\sqrt{2459}+896\right)-1}-\sqrt{5\left(18\sqrt{2459}+896\right)+4}=9
\sqrt{6x-1}-\sqrt{5x+4}=9 tenglamasida x uchun 18\sqrt{2459}+896 ni almashtiring.
9=9
Qisqartirish. x=18\sqrt{2459}+896 tenglamani qoniqtiradi.
x=18\sqrt{2459}+896
\sqrt{6x-1}=\sqrt{5x+4}+9 tenglamasi noyob yechimga ega.