Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(\sqrt{5x-1}-\sqrt{3x-2}\right)^{2}=\left(\sqrt{x-1}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
\left(\sqrt{5x-1}\right)^{2}-2\sqrt{5x-1}\sqrt{3x-2}+\left(\sqrt{3x-2}\right)^{2}=\left(\sqrt{x-1}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(\sqrt{5x-1}-\sqrt{3x-2}\right)^{2} kengaytirilishi uchun ishlating.
5x-1-2\sqrt{5x-1}\sqrt{3x-2}+\left(\sqrt{3x-2}\right)^{2}=\left(\sqrt{x-1}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{5x-1} ga hisoblang va 5x-1 ni qiymatni oling.
5x-1-2\sqrt{5x-1}\sqrt{3x-2}+3x-2=\left(\sqrt{x-1}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{3x-2} ga hisoblang va 3x-2 ni qiymatni oling.
8x-1-2\sqrt{5x-1}\sqrt{3x-2}-2=\left(\sqrt{x-1}\right)^{2}
8x ni olish uchun 5x va 3x ni birlashtirish.
8x-3-2\sqrt{5x-1}\sqrt{3x-2}=\left(\sqrt{x-1}\right)^{2}
-3 olish uchun -1 dan 2 ni ayirish.
8x-3-2\sqrt{5x-1}\sqrt{3x-2}=x-1
2 daraja ko‘rsatkichini \sqrt{x-1} ga hisoblang va x-1 ni qiymatni oling.
-2\sqrt{5x-1}\sqrt{3x-2}=x-1-\left(8x-3\right)
Tenglamaning ikkala tarafidan 8x-3 ni ayirish.
-2\sqrt{5x-1}\sqrt{3x-2}=x-1-8x+3
8x-3 teskarisini topish uchun har birining teskarisini toping.
-2\sqrt{5x-1}\sqrt{3x-2}=-7x-1+3
-7x ni olish uchun x va -8x ni birlashtirish.
-2\sqrt{5x-1}\sqrt{3x-2}=-7x+2
2 olish uchun -1 va 3'ni qo'shing.
\left(-2\sqrt{5x-1}\sqrt{3x-2}\right)^{2}=\left(-7x+2\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
\left(-2\right)^{2}\left(\sqrt{5x-1}\right)^{2}\left(\sqrt{3x-2}\right)^{2}=\left(-7x+2\right)^{2}
\left(-2\sqrt{5x-1}\sqrt{3x-2}\right)^{2} ni kengaytirish.
4\left(\sqrt{5x-1}\right)^{2}\left(\sqrt{3x-2}\right)^{2}=\left(-7x+2\right)^{2}
2 daraja ko‘rsatkichini -2 ga hisoblang va 4 ni qiymatni oling.
4\left(5x-1\right)\left(\sqrt{3x-2}\right)^{2}=\left(-7x+2\right)^{2}
2 daraja ko‘rsatkichini \sqrt{5x-1} ga hisoblang va 5x-1 ni qiymatni oling.
4\left(5x-1\right)\left(3x-2\right)=\left(-7x+2\right)^{2}
2 daraja ko‘rsatkichini \sqrt{3x-2} ga hisoblang va 3x-2 ni qiymatni oling.
\left(20x-4\right)\left(3x-2\right)=\left(-7x+2\right)^{2}
4 ga 5x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
60x^{2}-40x-12x+8=\left(-7x+2\right)^{2}
20x-4 ifodaning har bir elementini 3x-2 ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
60x^{2}-52x+8=\left(-7x+2\right)^{2}
-52x ni olish uchun -40x va -12x ni birlashtirish.
60x^{2}-52x+8=49x^{2}-28x+4
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(-7x+2\right)^{2} kengaytirilishi uchun ishlating.
60x^{2}-52x+8-49x^{2}=-28x+4
Ikkala tarafdan 49x^{2} ni ayirish.
11x^{2}-52x+8=-28x+4
11x^{2} ni olish uchun 60x^{2} va -49x^{2} ni birlashtirish.
11x^{2}-52x+8+28x=4
28x ni ikki tarafga qo’shing.
11x^{2}-24x+8=4
-24x ni olish uchun -52x va 28x ni birlashtirish.
11x^{2}-24x+8-4=0
Ikkala tarafdan 4 ni ayirish.
11x^{2}-24x+4=0
4 olish uchun 8 dan 4 ni ayirish.
a+b=-24 ab=11\times 4=44
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon 11x^{2}+ax+bx+4 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,-44 -2,-22 -4,-11
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b manfiy boʻlganda, a va b ikkisi ham manfiy. 44-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1-44=-45 -2-22=-24 -4-11=-15
Har bir juftlik yigʻindisini hisoblang.
a=-22 b=-2
Yechim – -24 yigʻindisini beruvchi juftlik.
\left(11x^{2}-22x\right)+\left(-2x+4\right)
11x^{2}-24x+4 ni \left(11x^{2}-22x\right)+\left(-2x+4\right) sifatida qaytadan yozish.
11x\left(x-2\right)-2\left(x-2\right)
Birinchi guruhda 11x ni va ikkinchi guruhda -2 ni faktordan chiqaring.
\left(x-2\right)\left(11x-2\right)
Distributiv funktsiyasidan foydalangan holda x-2 umumiy terminini chiqaring.
x=2 x=\frac{2}{11}
Tenglamani yechish uchun x-2=0 va 11x-2=0 ni yeching.
\sqrt{5\times \frac{2}{11}-1}-\sqrt{3\times \frac{2}{11}-2}=\sqrt{\frac{2}{11}-1}
\sqrt{5x-1}-\sqrt{3x-2}=\sqrt{x-1} tenglamasida x uchun \frac{2}{11} ni almashtiring. \sqrt{5\times \frac{2}{11}-1} ifodasi noaniq, chunki ildiz ostidagi qiymat manfiy boʻlishi mumkin emas.
\sqrt{5\times 2-1}-\sqrt{3\times 2-2}=\sqrt{2-1}
\sqrt{5x-1}-\sqrt{3x-2}=\sqrt{x-1} tenglamasida x uchun 2 ni almashtiring.
1=1
Qisqartirish. x=2 tenglamani qoniqtiradi.
x=2
\sqrt{5x-1}-\sqrt{3x-2}=\sqrt{x-1} tenglamasi noyob yechimga ega.