Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(\sqrt{5x+9}\right)^{2}=\left(2x+3\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
5x+9=\left(2x+3\right)^{2}
2 daraja ko‘rsatkichini \sqrt{5x+9} ga hisoblang va 5x+9 ni qiymatni oling.
5x+9=4x^{2}+12x+9
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2x+3\right)^{2} kengaytirilishi uchun ishlating.
5x+9-4x^{2}=12x+9
Ikkala tarafdan 4x^{2} ni ayirish.
5x+9-4x^{2}-12x=9
Ikkala tarafdan 12x ni ayirish.
-7x+9-4x^{2}=9
-7x ni olish uchun 5x va -12x ni birlashtirish.
-7x+9-4x^{2}-9=0
Ikkala tarafdan 9 ni ayirish.
-7x-4x^{2}=0
0 olish uchun 9 dan 9 ni ayirish.
x\left(-7-4x\right)=0
x omili.
x=0 x=-\frac{7}{4}
Tenglamani yechish uchun x=0 va -7-4x=0 ni yeching.
\sqrt{5\times 0+9}=2\times 0+3
\sqrt{5x+9}=2x+3 tenglamasida x uchun 0 ni almashtiring.
3=3
Qisqartirish. x=0 tenglamani qoniqtiradi.
\sqrt{5\left(-\frac{7}{4}\right)+9}=2\left(-\frac{7}{4}\right)+3
\sqrt{5x+9}=2x+3 tenglamasida x uchun -\frac{7}{4} ni almashtiring.
\frac{1}{2}=-\frac{1}{2}
Qisqartirish. x=-\frac{7}{4} qiymati bu tenglamani qoniqtirmaydi, chunki oʻng va chap tarafdagi belgilar bir-biriga qarama-qarshi.
x=0
\sqrt{5x+9}=2x+3 tenglamasi noyob yechimga ega.