x uchun yechish
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(\sqrt{5x+9}\right)^{2}=\left(2x+3\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
5x+9=\left(2x+3\right)^{2}
2 daraja ko‘rsatkichini \sqrt{5x+9} ga hisoblang va 5x+9 ni qiymatni oling.
5x+9=4x^{2}+12x+9
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2x+3\right)^{2} kengaytirilishi uchun ishlating.
5x+9-4x^{2}=12x+9
Ikkala tarafdan 4x^{2} ni ayirish.
5x+9-4x^{2}-12x=9
Ikkala tarafdan 12x ni ayirish.
-7x+9-4x^{2}=9
-7x ni olish uchun 5x va -12x ni birlashtirish.
-7x+9-4x^{2}-9=0
Ikkala tarafdan 9 ni ayirish.
-7x-4x^{2}=0
0 olish uchun 9 dan 9 ni ayirish.
x\left(-7-4x\right)=0
x omili.
x=0 x=-\frac{7}{4}
Tenglamani yechish uchun x=0 va -7-4x=0 ni yeching.
\sqrt{5\times 0+9}=2\times 0+3
\sqrt{5x+9}=2x+3 tenglamasida x uchun 0 ni almashtiring.
3=3
Qisqartirish. x=0 tenglamani qoniqtiradi.
\sqrt{5\left(-\frac{7}{4}\right)+9}=2\left(-\frac{7}{4}\right)+3
\sqrt{5x+9}=2x+3 tenglamasida x uchun -\frac{7}{4} ni almashtiring.
\frac{1}{2}=-\frac{1}{2}
Qisqartirish. x=-\frac{7}{4} qiymati bu tenglamani qoniqtirmaydi, chunki oʻng va chap tarafdagi belgilar bir-biriga qarama-qarshi.
x=0
\sqrt{5x+9}=2x+3 tenglamasi noyob yechimga ega.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}