x uchun yechish (complex solution)
x=\frac{1+\sqrt{15551}i}{5184}\approx 0,000192901+0,024055488i
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(\sqrt{2x-3}\right)^{2}=\left(6^{2}x\sqrt{4}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
2x-3=\left(6^{2}x\sqrt{4}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{2x-3} ga hisoblang va 2x-3 ni qiymatni oling.
2x-3=\left(36x\sqrt{4}\right)^{2}
2 daraja ko‘rsatkichini 6 ga hisoblang va 36 ni qiymatni oling.
2x-3=\left(36x\times 2\right)^{2}
4 ning kvadrat ildizini hisoblab, 2 natijaga ega bo‘ling.
2x-3=\left(72x\right)^{2}
72 hosil qilish uchun 36 va 2 ni ko'paytirish.
2x-3=72^{2}x^{2}
\left(72x\right)^{2} ni kengaytirish.
2x-3=5184x^{2}
2 daraja ko‘rsatkichini 72 ga hisoblang va 5184 ni qiymatni oling.
2x-3-5184x^{2}=0
Ikkala tarafdan 5184x^{2} ni ayirish.
-5184x^{2}+2x-3=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-2±\sqrt{2^{2}-4\left(-5184\right)\left(-3\right)}}{2\left(-5184\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -5184 ni a, 2 ni b va -3 ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\left(-5184\right)\left(-3\right)}}{2\left(-5184\right)}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4+20736\left(-3\right)}}{2\left(-5184\right)}
-4 ni -5184 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{4-62208}}{2\left(-5184\right)}
20736 ni -3 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{-62204}}{2\left(-5184\right)}
4 ni -62208 ga qo'shish.
x=\frac{-2±2\sqrt{15551}i}{2\left(-5184\right)}
-62204 ning kvadrat ildizini chiqarish.
x=\frac{-2±2\sqrt{15551}i}{-10368}
2 ni -5184 marotabaga ko'paytirish.
x=\frac{-2+2\sqrt{15551}i}{-10368}
x=\frac{-2±2\sqrt{15551}i}{-10368} tenglamasini yeching, bunda ± musbat. -2 ni 2i\sqrt{15551} ga qo'shish.
x=\frac{-\sqrt{15551}i+1}{5184}
-2+2i\sqrt{15551} ni -10368 ga bo'lish.
x=\frac{-2\sqrt{15551}i-2}{-10368}
x=\frac{-2±2\sqrt{15551}i}{-10368} tenglamasini yeching, bunda ± manfiy. -2 dan 2i\sqrt{15551} ni ayirish.
x=\frac{1+\sqrt{15551}i}{5184}
-2-2i\sqrt{15551} ni -10368 ga bo'lish.
x=\frac{-\sqrt{15551}i+1}{5184} x=\frac{1+\sqrt{15551}i}{5184}
Tenglama yechildi.
\sqrt{2\times \frac{-\sqrt{15551}i+1}{5184}-3}=6^{2}\times \frac{-\sqrt{15551}i+1}{5184}\sqrt{4}
\sqrt{2x-3}=6^{2}x\sqrt{4} tenglamasida x uchun \frac{-\sqrt{15551}i+1}{5184} ni almashtiring.
-\left(\frac{1}{72}-\frac{1}{72}i\times 15551^{\frac{1}{2}}\right)=-\frac{1}{72}i\times 15551^{\frac{1}{2}}+\frac{1}{72}
Qisqartirish. x=\frac{-\sqrt{15551}i+1}{5184} qiymati bu tenglamani qoniqtirmaydi.
\sqrt{2\times \frac{1+\sqrt{15551}i}{5184}-3}=6^{2}\times \frac{1+\sqrt{15551}i}{5184}\sqrt{4}
\sqrt{2x-3}=6^{2}x\sqrt{4} tenglamasida x uchun \frac{1+\sqrt{15551}i}{5184} ni almashtiring.
\frac{1}{72}+\frac{1}{72}i\times 15551^{\frac{1}{2}}=\frac{1}{72}+\frac{1}{72}i\times 15551^{\frac{1}{2}}
Qisqartirish. x=\frac{1+\sqrt{15551}i}{5184} tenglamani qoniqtiradi.
x=\frac{1+\sqrt{15551}i}{5184}
\sqrt{2x-3}=36\sqrt{4}x tenglamasi noyob yechimga ega.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}