Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\sqrt{2x}=\frac{1}{2}x-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
\left(\sqrt{2x}\right)^{2}=\left(\frac{1}{2}x-2\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
2x=\left(\frac{1}{2}x-2\right)^{2}
2 daraja ko‘rsatkichini \sqrt{2x} ga hisoblang va 2x ni qiymatni oling.
2x=\frac{1}{4}x^{2}-2x+4
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(\frac{1}{2}x-2\right)^{2} kengaytirilishi uchun ishlating.
2x-\frac{1}{4}x^{2}=-2x+4
Ikkala tarafdan \frac{1}{4}x^{2} ni ayirish.
2x-\frac{1}{4}x^{2}+2x=4
2x ni ikki tarafga qo’shing.
4x-\frac{1}{4}x^{2}=4
4x ni olish uchun 2x va 2x ni birlashtirish.
4x-\frac{1}{4}x^{2}-4=0
Ikkala tarafdan 4 ni ayirish.
-\frac{1}{4}x^{2}+4x-4=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-4±\sqrt{4^{2}-4\left(-\frac{1}{4}\right)\left(-4\right)}}{2\left(-\frac{1}{4}\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -\frac{1}{4} ni a, 4 ni b va -4 ni c bilan almashtiring.
x=\frac{-4±\sqrt{16-4\left(-\frac{1}{4}\right)\left(-4\right)}}{2\left(-\frac{1}{4}\right)}
4 kvadratini chiqarish.
x=\frac{-4±\sqrt{16-4}}{2\left(-\frac{1}{4}\right)}
-4 ni -\frac{1}{4} marotabaga ko'paytirish.
x=\frac{-4±\sqrt{12}}{2\left(-\frac{1}{4}\right)}
16 ni -4 ga qo'shish.
x=\frac{-4±2\sqrt{3}}{2\left(-\frac{1}{4}\right)}
12 ning kvadrat ildizini chiqarish.
x=\frac{-4±2\sqrt{3}}{-\frac{1}{2}}
2 ni -\frac{1}{4} marotabaga ko'paytirish.
x=\frac{2\sqrt{3}-4}{-\frac{1}{2}}
x=\frac{-4±2\sqrt{3}}{-\frac{1}{2}} tenglamasini yeching, bunda ± musbat. -4 ni 2\sqrt{3} ga qo'shish.
x=8-4\sqrt{3}
-4+2\sqrt{3} ni -\frac{1}{2} ga bo'lish -4+2\sqrt{3} ga k'paytirish -\frac{1}{2} ga qaytarish.
x=\frac{-2\sqrt{3}-4}{-\frac{1}{2}}
x=\frac{-4±2\sqrt{3}}{-\frac{1}{2}} tenglamasini yeching, bunda ± manfiy. -4 dan 2\sqrt{3} ni ayirish.
x=4\sqrt{3}+8
-4-2\sqrt{3} ni -\frac{1}{2} ga bo'lish -4-2\sqrt{3} ga k'paytirish -\frac{1}{2} ga qaytarish.
x=8-4\sqrt{3} x=4\sqrt{3}+8
Tenglama yechildi.
\sqrt{2\left(8-4\sqrt{3}\right)}+2=\frac{1}{2}\left(8-4\sqrt{3}\right)
\sqrt{2x}+2=\frac{1}{2}x tenglamasida x uchun 8-4\sqrt{3} ni almashtiring.
2\times 3^{\frac{1}{2}}=4-2\times 3^{\frac{1}{2}}
Qisqartirish. x=8-4\sqrt{3} qiymati bu tenglamani qoniqtirmaydi.
\sqrt{2\left(4\sqrt{3}+8\right)}+2=\frac{1}{2}\left(4\sqrt{3}+8\right)
\sqrt{2x}+2=\frac{1}{2}x tenglamasida x uchun 4\sqrt{3}+8 ni almashtiring.
2\times 3^{\frac{1}{2}}+4=2\times 3^{\frac{1}{2}}+4
Qisqartirish. x=4\sqrt{3}+8 tenglamani qoniqtiradi.
x=4\sqrt{3}+8
\sqrt{2x}=\frac{x}{2}-2 tenglamasi noyob yechimga ega.