x uchun yechish
x=4\left(\sqrt{3}+2\right)\approx 14,92820323
Grafik
Baham ko'rish
Klipbordga nusxa olish
\sqrt{2x}=\frac{1}{2}x-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
\left(\sqrt{2x}\right)^{2}=\left(\frac{1}{2}x-2\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
2x=\left(\frac{1}{2}x-2\right)^{2}
2 daraja ko‘rsatkichini \sqrt{2x} ga hisoblang va 2x ni qiymatni oling.
2x=\frac{1}{4}x^{2}-2x+4
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(\frac{1}{2}x-2\right)^{2} kengaytirilishi uchun ishlating.
2x-\frac{1}{4}x^{2}=-2x+4
Ikkala tarafdan \frac{1}{4}x^{2} ni ayirish.
2x-\frac{1}{4}x^{2}+2x=4
2x ni ikki tarafga qo’shing.
4x-\frac{1}{4}x^{2}=4
4x ni olish uchun 2x va 2x ni birlashtirish.
4x-\frac{1}{4}x^{2}-4=0
Ikkala tarafdan 4 ni ayirish.
-\frac{1}{4}x^{2}+4x-4=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-4±\sqrt{4^{2}-4\left(-\frac{1}{4}\right)\left(-4\right)}}{2\left(-\frac{1}{4}\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -\frac{1}{4} ni a, 4 ni b va -4 ni c bilan almashtiring.
x=\frac{-4±\sqrt{16-4\left(-\frac{1}{4}\right)\left(-4\right)}}{2\left(-\frac{1}{4}\right)}
4 kvadratini chiqarish.
x=\frac{-4±\sqrt{16-4}}{2\left(-\frac{1}{4}\right)}
-4 ni -\frac{1}{4} marotabaga ko'paytirish.
x=\frac{-4±\sqrt{12}}{2\left(-\frac{1}{4}\right)}
16 ni -4 ga qo'shish.
x=\frac{-4±2\sqrt{3}}{2\left(-\frac{1}{4}\right)}
12 ning kvadrat ildizini chiqarish.
x=\frac{-4±2\sqrt{3}}{-\frac{1}{2}}
2 ni -\frac{1}{4} marotabaga ko'paytirish.
x=\frac{2\sqrt{3}-4}{-\frac{1}{2}}
x=\frac{-4±2\sqrt{3}}{-\frac{1}{2}} tenglamasini yeching, bunda ± musbat. -4 ni 2\sqrt{3} ga qo'shish.
x=8-4\sqrt{3}
-4+2\sqrt{3} ni -\frac{1}{2} ga bo'lish -4+2\sqrt{3} ga k'paytirish -\frac{1}{2} ga qaytarish.
x=\frac{-2\sqrt{3}-4}{-\frac{1}{2}}
x=\frac{-4±2\sqrt{3}}{-\frac{1}{2}} tenglamasini yeching, bunda ± manfiy. -4 dan 2\sqrt{3} ni ayirish.
x=4\sqrt{3}+8
-4-2\sqrt{3} ni -\frac{1}{2} ga bo'lish -4-2\sqrt{3} ga k'paytirish -\frac{1}{2} ga qaytarish.
x=8-4\sqrt{3} x=4\sqrt{3}+8
Tenglama yechildi.
\sqrt{2\left(8-4\sqrt{3}\right)}+2=\frac{1}{2}\left(8-4\sqrt{3}\right)
\sqrt{2x}+2=\frac{1}{2}x tenglamasida x uchun 8-4\sqrt{3} ni almashtiring.
2\times 3^{\frac{1}{2}}=4-2\times 3^{\frac{1}{2}}
Qisqartirish. x=8-4\sqrt{3} qiymati bu tenglamani qoniqtirmaydi.
\sqrt{2\left(4\sqrt{3}+8\right)}+2=\frac{1}{2}\left(4\sqrt{3}+8\right)
\sqrt{2x}+2=\frac{1}{2}x tenglamasida x uchun 4\sqrt{3}+8 ni almashtiring.
2\times 3^{\frac{1}{2}}+4=2\times 3^{\frac{1}{2}}+4
Qisqartirish. x=4\sqrt{3}+8 tenglamani qoniqtiradi.
x=4\sqrt{3}+8
\sqrt{2x}=\frac{x}{2}-2 tenglamasi noyob yechimga ega.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}