x uchun yechish
x=20
x=8
Grafik
Baham ko'rish
Klipbordga nusxa olish
\sqrt{2x+9}=-\left(-\sqrt{x-4}-3\right)
Tenglamaning ikkala tarafidan -\sqrt{x-4}-3 ni ayirish.
\sqrt{2x+9}=-\left(-\sqrt{x-4}\right)-\left(-3\right)
-\sqrt{x-4}-3 teskarisini topish uchun har birining teskarisini toping.
\sqrt{2x+9}=\sqrt{x-4}-\left(-3\right)
-\sqrt{x-4} ning teskarisi \sqrt{x-4} ga teng.
\sqrt{2x+9}=\sqrt{x-4}+3
-3 ning teskarisi 3 ga teng.
\left(\sqrt{2x+9}\right)^{2}=\left(\sqrt{x-4}+3\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
2x+9=\left(\sqrt{x-4}+3\right)^{2}
2 daraja ko‘rsatkichini \sqrt{2x+9} ga hisoblang va 2x+9 ni qiymatni oling.
2x+9=\left(\sqrt{x-4}\right)^{2}+6\sqrt{x-4}+9
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(\sqrt{x-4}+3\right)^{2} kengaytirilishi uchun ishlating.
2x+9=x-4+6\sqrt{x-4}+9
2 daraja ko‘rsatkichini \sqrt{x-4} ga hisoblang va x-4 ni qiymatni oling.
2x+9=x+5+6\sqrt{x-4}
5 olish uchun -4 va 9'ni qo'shing.
2x+9-\left(x+5\right)=6\sqrt{x-4}
Tenglamaning ikkala tarafidan x+5 ni ayirish.
2x+9-x-5=6\sqrt{x-4}
x+5 teskarisini topish uchun har birining teskarisini toping.
x+9-5=6\sqrt{x-4}
x ni olish uchun 2x va -x ni birlashtirish.
x+4=6\sqrt{x-4}
4 olish uchun 9 dan 5 ni ayirish.
\left(x+4\right)^{2}=\left(6\sqrt{x-4}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
x^{2}+8x+16=\left(6\sqrt{x-4}\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+4\right)^{2} kengaytirilishi uchun ishlating.
x^{2}+8x+16=6^{2}\left(\sqrt{x-4}\right)^{2}
\left(6\sqrt{x-4}\right)^{2} ni kengaytirish.
x^{2}+8x+16=36\left(\sqrt{x-4}\right)^{2}
2 daraja ko‘rsatkichini 6 ga hisoblang va 36 ni qiymatni oling.
x^{2}+8x+16=36\left(x-4\right)
2 daraja ko‘rsatkichini \sqrt{x-4} ga hisoblang va x-4 ni qiymatni oling.
x^{2}+8x+16=36x-144
36 ga x-4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+8x+16-36x=-144
Ikkala tarafdan 36x ni ayirish.
x^{2}-28x+16=-144
-28x ni olish uchun 8x va -36x ni birlashtirish.
x^{2}-28x+16+144=0
144 ni ikki tarafga qo’shing.
x^{2}-28x+160=0
160 olish uchun 16 va 144'ni qo'shing.
a+b=-28 ab=160
Bu tenglamani yechish uchun x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) formulasi yordamida x^{2}-28x+160 ni faktorlang. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,-160 -2,-80 -4,-40 -5,-32 -8,-20 -10,-16
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b manfiy boʻlganda, a va b ikkisi ham manfiy. 160-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1-160=-161 -2-80=-82 -4-40=-44 -5-32=-37 -8-20=-28 -10-16=-26
Har bir juftlik yigʻindisini hisoblang.
a=-20 b=-8
Yechim – -28 yigʻindisini beruvchi juftlik.
\left(x-20\right)\left(x-8\right)
Faktorlangan \left(x+a\right)\left(x+b\right) ifodani olingan qiymatlar bilan qaytadan yozing.
x=20 x=8
Tenglamani yechish uchun x-20=0 va x-8=0 ni yeching.
\sqrt{2\times 20+9}-\sqrt{20-4}-3=0
\sqrt{2x+9}-\sqrt{x-4}-3=0 tenglamasida x uchun 20 ni almashtiring.
0=0
Qisqartirish. x=20 tenglamani qoniqtiradi.
\sqrt{2\times 8+9}-\sqrt{8-4}-3=0
\sqrt{2x+9}-\sqrt{x-4}-3=0 tenglamasida x uchun 8 ni almashtiring.
0=0
Qisqartirish. x=8 tenglamani qoniqtiradi.
x=20 x=8
\sqrt{2x+9}=\sqrt{x-4}+3 boʻyicha barcha yechimlar roʻyxati.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}