x uchun yechish
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(\sqrt{2x+16}\right)^{2}=\left(2x+4\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
2x+16=\left(2x+4\right)^{2}
2 daraja ko‘rsatkichini \sqrt{2x+16} ga hisoblang va 2x+16 ni qiymatni oling.
2x+16=4x^{2}+16x+16
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2x+4\right)^{2} kengaytirilishi uchun ishlating.
2x+16-4x^{2}=16x+16
Ikkala tarafdan 4x^{2} ni ayirish.
2x+16-4x^{2}-16x=16
Ikkala tarafdan 16x ni ayirish.
-14x+16-4x^{2}=16
-14x ni olish uchun 2x va -16x ni birlashtirish.
-14x+16-4x^{2}-16=0
Ikkala tarafdan 16 ni ayirish.
-14x-4x^{2}=0
0 olish uchun 16 dan 16 ni ayirish.
x\left(-14-4x\right)=0
x omili.
x=0 x=-\frac{7}{2}
Tenglamani yechish uchun x=0 va -14-4x=0 ni yeching.
\sqrt{2\times 0+16}=2\times 0+4
\sqrt{2x+16}=2x+4 tenglamasida x uchun 0 ni almashtiring.
4=4
Qisqartirish. x=0 tenglamani qoniqtiradi.
\sqrt{2\left(-\frac{7}{2}\right)+16}=2\left(-\frac{7}{2}\right)+4
\sqrt{2x+16}=2x+4 tenglamasida x uchun -\frac{7}{2} ni almashtiring.
3=-3
Qisqartirish. x=-\frac{7}{2} qiymati bu tenglamani qoniqtirmaydi, chunki oʻng va chap tarafdagi belgilar bir-biriga qarama-qarshi.
x=0
\sqrt{2x+16}=2x+4 tenglamasi noyob yechimga ega.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}