u uchun yechish
u=-1
Baham ko'rish
Klipbordga nusxa olish
\left(\sqrt{2u+3}\right)^{2}=\left(\sqrt{-2u-1}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
2u+3=\left(\sqrt{-2u-1}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{2u+3} ga hisoblang va 2u+3 ni qiymatni oling.
2u+3=-2u-1
2 daraja ko‘rsatkichini \sqrt{-2u-1} ga hisoblang va -2u-1 ni qiymatni oling.
2u+3+2u=-1
2u ni ikki tarafga qo’shing.
4u+3=-1
4u ni olish uchun 2u va 2u ni birlashtirish.
4u=-1-3
Ikkala tarafdan 3 ni ayirish.
4u=-4
-4 olish uchun -1 dan 3 ni ayirish.
u=\frac{-4}{4}
Ikki tarafini 4 ga bo‘ling.
u=-1
-1 ni olish uchun -4 ni 4 ga bo‘ling.
\sqrt{2\left(-1\right)+3}=\sqrt{-2\left(-1\right)-1}
\sqrt{2u+3}=\sqrt{-2u-1} tenglamasida u uchun -1 ni almashtiring.
1=1
Qisqartirish. u=-1 tenglamani qoniqtiradi.
u=-1
\sqrt{2u+3}=\sqrt{-2u-1} tenglamasi noyob yechimga ega.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}