Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\sqrt{15+x^{2}}=2+\sqrt{19-x^{2}}
Tenglamaning ikkala tarafidan -\sqrt{19-x^{2}} ni ayirish.
\left(\sqrt{15+x^{2}}\right)^{2}=\left(2+\sqrt{19-x^{2}}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
15+x^{2}=\left(2+\sqrt{19-x^{2}}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{15+x^{2}} ga hisoblang va 15+x^{2} ni qiymatni oling.
15+x^{2}=4+4\sqrt{19-x^{2}}+\left(\sqrt{19-x^{2}}\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2+\sqrt{19-x^{2}}\right)^{2} kengaytirilishi uchun ishlating.
15+x^{2}=4+4\sqrt{19-x^{2}}+19-x^{2}
2 daraja ko‘rsatkichini \sqrt{19-x^{2}} ga hisoblang va 19-x^{2} ni qiymatni oling.
15+x^{2}=23+4\sqrt{19-x^{2}}-x^{2}
23 olish uchun 4 va 19'ni qo'shing.
15+x^{2}-\left(23-x^{2}\right)=4\sqrt{19-x^{2}}
Tenglamaning ikkala tarafidan 23-x^{2} ni ayirish.
15+x^{2}-23+x^{2}=4\sqrt{19-x^{2}}
23-x^{2} teskarisini topish uchun har birining teskarisini toping.
-8+x^{2}+x^{2}=4\sqrt{19-x^{2}}
-8 olish uchun 15 dan 23 ni ayirish.
-8+2x^{2}=4\sqrt{19-x^{2}}
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
\left(-8+2x^{2}\right)^{2}=\left(4\sqrt{19-x^{2}}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
64-32x^{2}+4\left(x^{2}\right)^{2}=\left(4\sqrt{19-x^{2}}\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(-8+2x^{2}\right)^{2} kengaytirilishi uchun ishlating.
64-32x^{2}+4x^{4}=\left(4\sqrt{19-x^{2}}\right)^{2}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
64-32x^{2}+4x^{4}=4^{2}\left(\sqrt{19-x^{2}}\right)^{2}
\left(4\sqrt{19-x^{2}}\right)^{2} ni kengaytirish.
64-32x^{2}+4x^{4}=16\left(\sqrt{19-x^{2}}\right)^{2}
2 daraja ko‘rsatkichini 4 ga hisoblang va 16 ni qiymatni oling.
64-32x^{2}+4x^{4}=16\left(19-x^{2}\right)
2 daraja ko‘rsatkichini \sqrt{19-x^{2}} ga hisoblang va 19-x^{2} ni qiymatni oling.
64-32x^{2}+4x^{4}=304-16x^{2}
16 ga 19-x^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
64-32x^{2}+4x^{4}-304=-16x^{2}
Ikkala tarafdan 304 ni ayirish.
-240-32x^{2}+4x^{4}=-16x^{2}
-240 olish uchun 64 dan 304 ni ayirish.
-240-32x^{2}+4x^{4}+16x^{2}=0
16x^{2} ni ikki tarafga qo’shing.
-240-16x^{2}+4x^{4}=0
-16x^{2} ni olish uchun -32x^{2} va 16x^{2} ni birlashtirish.
4t^{2}-16t-240=0
x^{2} uchun t ni almashtiring.
t=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 4\left(-240\right)}}{2\times 4}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 4 ni, b uchun -16 ni va c uchun -240 ni ayiring.
t=\frac{16±64}{8}
Hisoblarni amalga oshiring.
t=10 t=-6
t=\frac{16±64}{8} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
x=\sqrt{10} x=-\sqrt{10}
x=t^{2} boʻlganda, yechimlar musbat t uchun x=±\sqrt{t} hisoblanishi orqali olinadi.
\sqrt{15+\left(\sqrt{10}\right)^{2}}-\sqrt{19-\left(\sqrt{10}\right)^{2}}=2
\sqrt{15+x^{2}}-\sqrt{19-x^{2}}=2 tenglamasida x uchun \sqrt{10} ni almashtiring.
2=2
Qisqartirish. x=\sqrt{10} tenglamani qoniqtiradi.
\sqrt{15+\left(-\sqrt{10}\right)^{2}}-\sqrt{19-\left(-\sqrt{10}\right)^{2}}=2
\sqrt{15+x^{2}}-\sqrt{19-x^{2}}=2 tenglamasida x uchun -\sqrt{10} ni almashtiring.
2=2
Qisqartirish. x=-\sqrt{10} tenglamani qoniqtiradi.
x=\sqrt{10} x=-\sqrt{10}
\sqrt{x^{2}+15}=\sqrt{19-x^{2}}+2 boʻyicha barcha yechimlar roʻyxati.