Baholash
6\sqrt{201}\approx 85,064681273
Viktorina
Arithmetic
5xshash muammolar:
\sqrt { 18 ^ { 2 } + ( \frac { 144 } { \sqrt { 3 } } ) ^ { 2 } } =
Baham ko'rish
Klipbordga nusxa olish
\sqrt{324+\left(\frac{144}{\sqrt{3}}\right)^{2}}
2 daraja ko‘rsatkichini 18 ga hisoblang va 324 ni qiymatni oling.
\sqrt{324+\left(\frac{144\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)^{2}}
\frac{144}{\sqrt{3}} maxrajini \sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\sqrt{324+\left(\frac{144\sqrt{3}}{3}\right)^{2}}
\sqrt{3} kvadrati – 3.
\sqrt{324+\left(48\sqrt{3}\right)^{2}}
48\sqrt{3} ni olish uchun 144\sqrt{3} ni 3 ga bo‘ling.
\sqrt{324+48^{2}\left(\sqrt{3}\right)^{2}}
\left(48\sqrt{3}\right)^{2} ni kengaytirish.
\sqrt{324+2304\left(\sqrt{3}\right)^{2}}
2 daraja ko‘rsatkichini 48 ga hisoblang va 2304 ni qiymatni oling.
\sqrt{324+2304\times 3}
\sqrt{3} kvadrati – 3.
\sqrt{324+6912}
6912 hosil qilish uchun 2304 va 3 ni ko'paytirish.
\sqrt{7236}
7236 olish uchun 324 va 6912'ni qo'shing.
6\sqrt{201}
Faktor: 7236=6^{2}\times 201. \sqrt{6^{2}\times 201} koʻpaytmasining kvadrat ildizini \sqrt{6^{2}}\sqrt{201} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 6^{2} ning kvadrat ildizini chiqarish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}