x uchun yechish
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(\sqrt{1-\frac{x^{2}}{10}}\right)^{2}=\left(1-\frac{x}{3}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
1-\frac{x^{2}}{10}=\left(1-\frac{x}{3}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{1-\frac{x^{2}}{10}} ga hisoblang va 1-\frac{x^{2}}{10} ni qiymatni oling.
1-\frac{x^{2}}{10}=1+2\left(-\frac{x}{3}\right)+\left(-\frac{x}{3}\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(1-\frac{x}{3}\right)^{2} kengaytirilishi uchun ishlating.
1-\frac{x^{2}}{10}=1+\frac{-2x}{3}+\left(-\frac{x}{3}\right)^{2}
2\left(-\frac{x}{3}\right) ni yagona kasrga aylantiring.
1-\frac{x^{2}}{10}=1+\frac{-2x}{3}+\left(\frac{x}{3}\right)^{2}
2 daraja ko‘rsatkichini -\frac{x}{3} ga hisoblang va \left(\frac{x}{3}\right)^{2} ni qiymatni oling.
1-\frac{x^{2}}{10}=1+\frac{-2x}{3}+\frac{x^{2}}{3^{2}}
\frac{x}{3}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
1-\frac{x^{2}}{10}=\frac{3^{2}}{3^{2}}+\frac{-2x}{3}+\frac{x^{2}}{3^{2}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 1 ni \frac{3^{2}}{3^{2}} marotabaga ko'paytirish.
1-\frac{x^{2}}{10}=\frac{3^{2}+x^{2}}{3^{2}}+\frac{-2x}{3}
\frac{3^{2}}{3^{2}} va \frac{x^{2}}{3^{2}} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
1-\frac{x^{2}}{10}=\frac{9+x^{2}}{3^{2}}+\frac{-2x}{3}
3^{2}+x^{2} kabi iboralarga o‘xshab birlashtiring.
1-\frac{x^{2}}{10}=\frac{9+x^{2}}{9}+\frac{3\left(-2\right)x}{9}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 3^{2} va 3 ning eng kichik umumiy karralisi 9. \frac{-2x}{3} ni \frac{3}{3} marotabaga ko'paytirish.
1-\frac{x^{2}}{10}=\frac{9+x^{2}+3\left(-2\right)x}{9}
\frac{9+x^{2}}{9} va \frac{3\left(-2\right)x}{9} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
1-\frac{x^{2}}{10}=\frac{9+x^{2}-6x}{9}
9+x^{2}+3\left(-2\right)x ichidagi ko‘paytirishlarni bajaring.
1-\frac{x^{2}}{10}=1+\frac{1}{9}x^{2}-\frac{2}{3}x
1+\frac{1}{9}x^{2}-\frac{2}{3}x natijani olish uchun 9+x^{2}-6x ning har bir ifodasini 9 ga bo‘ling.
90-9x^{2}=90+10x^{2}-60x
Tenglamaning ikkala tarafini 90 ga, 10,9,3 ning eng kichik karralisiga ko‘paytiring.
90-9x^{2}-90=10x^{2}-60x
Ikkala tarafdan 90 ni ayirish.
-9x^{2}=10x^{2}-60x
0 olish uchun 90 dan 90 ni ayirish.
-9x^{2}-10x^{2}=-60x
Ikkala tarafdan 10x^{2} ni ayirish.
-19x^{2}=-60x
-19x^{2} ni olish uchun -9x^{2} va -10x^{2} ni birlashtirish.
-19x^{2}+60x=0
60x ni ikki tarafga qo’shing.
x\left(-19x+60\right)=0
x omili.
x=0 x=\frac{60}{19}
Tenglamani yechish uchun x=0 va -19x+60=0 ni yeching.
\sqrt{1-\frac{0^{2}}{10}}=1-\frac{0}{3}
\sqrt{1-\frac{x^{2}}{10}}=1-\frac{x}{3} tenglamasida x uchun 0 ni almashtiring.
1=1
Qisqartirish. x=0 tenglamani qoniqtiradi.
\sqrt{1-\frac{\left(\frac{60}{19}\right)^{2}}{10}}=1-\frac{\frac{60}{19}}{3}
\sqrt{1-\frac{x^{2}}{10}}=1-\frac{x}{3} tenglamasida x uchun \frac{60}{19} ni almashtiring.
\frac{1}{19}=-\frac{1}{19}
Qisqartirish. x=\frac{60}{19} qiymati bu tenglamani qoniqtirmaydi, chunki oʻng va chap tarafdagi belgilar bir-biriga qarama-qarshi.
x=0
\sqrt{-\frac{x^{2}}{10}+1}=-\frac{x}{3}+1 tenglamasi noyob yechimga ega.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}