x uchun yechish (complex solution)
x=\frac{35\sqrt{3}i}{3}\approx 20,207259422i
Grafik
Baham ko'rish
Klipbordga nusxa olish
\sqrt{3}ix+40=5
Faktor: -3=3\left(-1\right). \sqrt{3\left(-1\right)} koʻpaytmasining kvadrat ildizini \sqrt{3}\sqrt{-1} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. Ta’rifi bo‘yicha, -1 ning kvadrat ildizi i ga teng.
\sqrt{3}ix=5-40
Ikkala tarafdan 40 ni ayirish.
\sqrt{3}ix=-35
-35 olish uchun 5 dan 40 ni ayirish.
\frac{\sqrt{3}ix}{\sqrt{3}i}=-\frac{35}{\sqrt{3}i}
Ikki tarafini i\sqrt{3} ga bo‘ling.
x=-\frac{35}{\sqrt{3}i}
i\sqrt{3} ga bo'lish i\sqrt{3} ga ko'paytirishni bekor qiladi.
x=\frac{35\sqrt{3}i}{3}
-35 ni i\sqrt{3} ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}