x uchun yechish
x=\frac{y-3}{2}
y uchun yechish
y=2x+3
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(\sqrt{\left(x-2\right)^{2}+\left(y-2\right)^{2}}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
\left(\sqrt{x^{2}-4x+4+\left(y-2\right)^{2}}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-2\right)^{2} kengaytirilishi uchun ishlating.
\left(\sqrt{x^{2}-4x+4+y^{2}-4y+4}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(y-2\right)^{2} kengaytirilishi uchun ishlating.
\left(\sqrt{x^{2}-4x+8+y^{2}-4y}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
8 olish uchun 4 va 4'ni qo'shing.
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x^{2}-4x+8+y^{2}-4y} ga hisoblang va x^{2}-4x+8+y^{2}-4y ni qiymatni oling.
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{\left(x+2\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
-2 ning teskarisi 2 ga teng.
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{x^{2}+4x+4+\left(y-4\right)^{2}}\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+2\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{x^{2}+4x+4+y^{2}-8y+16}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(y-4\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{x^{2}+4x+20+y^{2}-8y}\right)^{2}
20 olish uchun 4 va 16'ni qo'shing.
x^{2}-4x+8+y^{2}-4y=x^{2}+4x+20+y^{2}-8y
2 daraja ko‘rsatkichini \sqrt{x^{2}+4x+20+y^{2}-8y} ga hisoblang va x^{2}+4x+20+y^{2}-8y ni qiymatni oling.
x^{2}-4x+8+y^{2}-4y-x^{2}=4x+20+y^{2}-8y
Ikkala tarafdan x^{2} ni ayirish.
-4x+8+y^{2}-4y=4x+20+y^{2}-8y
0 ni olish uchun x^{2} va -x^{2} ni birlashtirish.
-4x+8+y^{2}-4y-4x=20+y^{2}-8y
Ikkala tarafdan 4x ni ayirish.
-8x+8+y^{2}-4y=20+y^{2}-8y
-8x ni olish uchun -4x va -4x ni birlashtirish.
-8x+y^{2}-4y=20+y^{2}-8y-8
Ikkala tarafdan 8 ni ayirish.
-8x+y^{2}-4y=12+y^{2}-8y
12 olish uchun 20 dan 8 ni ayirish.
-8x-4y=12+y^{2}-8y-y^{2}
Ikkala tarafdan y^{2} ni ayirish.
-8x-4y=12-8y
0 ni olish uchun y^{2} va -y^{2} ni birlashtirish.
-8x=12-8y+4y
4y ni ikki tarafga qo’shing.
-8x=12-4y
-4y ni olish uchun -8y va 4y ni birlashtirish.
\frac{-8x}{-8}=\frac{12-4y}{-8}
Ikki tarafini -8 ga bo‘ling.
x=\frac{12-4y}{-8}
-8 ga bo'lish -8 ga ko'paytirishni bekor qiladi.
x=\frac{y-3}{2}
12-4y ni -8 ga bo'lish.
\sqrt{\left(\frac{y-3}{2}-2\right)^{2}+\left(y-2\right)^{2}}=\sqrt{\left(\frac{y-3}{2}-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}
\sqrt{\left(x-2\right)^{2}+\left(y-2\right)^{2}}=\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}} tenglamasida x uchun \frac{y-3}{2} ni almashtiring.
\frac{1}{2}\left(65-30y+5y^{2}\right)^{\frac{1}{2}}=\frac{1}{2}\left(65-30y+5y^{2}\right)^{\frac{1}{2}}
Qisqartirish. x=\frac{y-3}{2} tenglamani qoniqtiradi.
x=\frac{y-3}{2}
\sqrt{\left(x-2\right)^{2}+\left(y-2\right)^{2}}=\sqrt{\left(y-4\right)^{2}+\left(x-\left(-2\right)\right)^{2}} tenglamasi noyob yechimga ega.
\left(\sqrt{\left(x-2\right)^{2}+\left(y-2\right)^{2}}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
\left(\sqrt{x^{2}-4x+4+\left(y-2\right)^{2}}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-2\right)^{2} kengaytirilishi uchun ishlating.
\left(\sqrt{x^{2}-4x+4+y^{2}-4y+4}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(y-2\right)^{2} kengaytirilishi uchun ishlating.
\left(\sqrt{x^{2}-4x+8+y^{2}-4y}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
8 olish uchun 4 va 4'ni qo'shing.
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x^{2}-4x+8+y^{2}-4y} ga hisoblang va x^{2}-4x+8+y^{2}-4y ni qiymatni oling.
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{\left(x+2\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
-2 ning teskarisi 2 ga teng.
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{x^{2}+4x+4+\left(y-4\right)^{2}}\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+2\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{x^{2}+4x+4+y^{2}-8y+16}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(y-4\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{x^{2}+4x+20+y^{2}-8y}\right)^{2}
20 olish uchun 4 va 16'ni qo'shing.
x^{2}-4x+8+y^{2}-4y=x^{2}+4x+20+y^{2}-8y
2 daraja ko‘rsatkichini \sqrt{x^{2}+4x+20+y^{2}-8y} ga hisoblang va x^{2}+4x+20+y^{2}-8y ni qiymatni oling.
x^{2}-4x+8+y^{2}-4y-y^{2}=x^{2}+4x+20-8y
Ikkala tarafdan y^{2} ni ayirish.
x^{2}-4x+8-4y=x^{2}+4x+20-8y
0 ni olish uchun y^{2} va -y^{2} ni birlashtirish.
x^{2}-4x+8-4y+8y=x^{2}+4x+20
8y ni ikki tarafga qo’shing.
x^{2}-4x+8+4y=x^{2}+4x+20
4y ni olish uchun -4y va 8y ni birlashtirish.
-4x+8+4y=x^{2}+4x+20-x^{2}
Ikkala tarafdan x^{2} ni ayirish.
-4x+8+4y=4x+20
0 ni olish uchun x^{2} va -x^{2} ni birlashtirish.
8+4y=4x+20+4x
4x ni ikki tarafga qo’shing.
8+4y=8x+20
8x ni olish uchun 4x va 4x ni birlashtirish.
4y=8x+20-8
Ikkala tarafdan 8 ni ayirish.
4y=8x+12
12 olish uchun 20 dan 8 ni ayirish.
\frac{4y}{4}=\frac{8x+12}{4}
Ikki tarafini 4 ga bo‘ling.
y=\frac{8x+12}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
y=2x+3
8x+12 ni 4 ga bo'lish.
\sqrt{\left(x-2\right)^{2}+\left(2x+3-2\right)^{2}}=\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(2x+3-4\right)^{2}}
\sqrt{\left(x-2\right)^{2}+\left(y-2\right)^{2}}=\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}} tenglamasida y uchun 2x+3 ni almashtiring.
\left(5+5x^{2}\right)^{\frac{1}{2}}=\left(5+5x^{2}\right)^{\frac{1}{2}}
Qisqartirish. y=2x+3 tenglamani qoniqtiradi.
y=2x+3
\sqrt{\left(x-2\right)^{2}+\left(y-2\right)^{2}}=\sqrt{\left(y-4\right)^{2}+\left(x-\left(-2\right)\right)^{2}} tenglamasi noyob yechimga ega.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}