Baholash
12\sqrt{2}\approx 16,970562748
Viktorina
Arithmetic
5xshash muammolar:
\sqrt { ( 6 \sqrt { 6 } ) ^ { 2 } + ( 6 \sqrt { 2 } ) ^ { 2 } }
Baham ko'rish
Klipbordga nusxa olish
\sqrt{6^{2}\left(\sqrt{6}\right)^{2}+\left(6\sqrt{2}\right)^{2}}
\left(6\sqrt{6}\right)^{2} ni kengaytirish.
\sqrt{36\left(\sqrt{6}\right)^{2}+\left(6\sqrt{2}\right)^{2}}
2 daraja ko‘rsatkichini 6 ga hisoblang va 36 ni qiymatni oling.
\sqrt{36\times 6+\left(6\sqrt{2}\right)^{2}}
\sqrt{6} kvadrati – 6.
\sqrt{216+\left(6\sqrt{2}\right)^{2}}
216 hosil qilish uchun 36 va 6 ni ko'paytirish.
\sqrt{216+6^{2}\left(\sqrt{2}\right)^{2}}
\left(6\sqrt{2}\right)^{2} ni kengaytirish.
\sqrt{216+36\left(\sqrt{2}\right)^{2}}
2 daraja ko‘rsatkichini 6 ga hisoblang va 36 ni qiymatni oling.
\sqrt{216+36\times 2}
\sqrt{2} kvadrati – 2.
\sqrt{216+72}
72 hosil qilish uchun 36 va 2 ni ko'paytirish.
\sqrt{288}
288 olish uchun 216 va 72'ni qo'shing.
12\sqrt{2}
Faktor: 288=12^{2}\times 2. \sqrt{12^{2}\times 2} koʻpaytmasining kvadrat ildizini \sqrt{12^{2}}\sqrt{2} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 12^{2} ning kvadrat ildizini chiqarish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}