\sqrt { ( 1 + 6 ^ { 2 } ) [ ( \frac { 144 } { 36 } ) ^ { 2 } - 4 \times \frac { 121 } { 36 } }
Baholash
\frac{\sqrt{851}}{3}\approx 9,723968097
Baham ko'rish
Klipbordga nusxa olish
\sqrt{\left(1+36\right)\left(\left(\frac{144}{36}\right)^{2}-4\times \frac{121}{36}\right)}
2 daraja ko‘rsatkichini 6 ga hisoblang va 36 ni qiymatni oling.
\sqrt{37\left(\left(\frac{144}{36}\right)^{2}-4\times \frac{121}{36}\right)}
37 olish uchun 1 va 36'ni qo'shing.
\sqrt{37\left(4^{2}-4\times \frac{121}{36}\right)}
4 ni olish uchun 144 ni 36 ga bo‘ling.
\sqrt{37\left(16-4\times \frac{121}{36}\right)}
2 daraja ko‘rsatkichini 4 ga hisoblang va 16 ni qiymatni oling.
\sqrt{37\left(16-\frac{121}{9}\right)}
\frac{121}{9} hosil qilish uchun 4 va \frac{121}{36} ni ko'paytirish.
\sqrt{37\times \frac{23}{9}}
\frac{23}{9} olish uchun 16 dan \frac{121}{9} ni ayirish.
\sqrt{\frac{851}{9}}
\frac{851}{9} hosil qilish uchun 37 va \frac{23}{9} ni ko'paytirish.
\frac{\sqrt{851}}{\sqrt{9}}
\sqrt{\frac{851}{9}} boʻlinmasining kvadrat ildizini \frac{\sqrt{851}}{\sqrt{9}} kvadrat ildizlarining boʻlinmasi sifatida qayta yozing.
\frac{\sqrt{851}}{3}
9 ning kvadrat ildizini hisoblab, 3 natijaga ega bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}