Baholash
\frac{11}{4}=2,75
Omil
\frac{11}{2 ^ {2}} = 2\frac{3}{4} = 2,75
Baham ko'rish
Klipbordga nusxa olish
\sqrt{\frac{\left(\frac{11}{4}\times \frac{8}{11}\right)^{2}}{\left(\frac{\frac{23}{12}-\frac{3}{2}}{\frac{5}{4}}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Ayni asosning daraja ko‘rsatkichini bo‘lish uchun maxrajning darajasini surat darajasidan ayiring. 2 dan 1 ni ayirib, 1 ni oling.
\sqrt{\frac{2^{2}}{\left(\frac{\frac{23}{12}-\frac{3}{2}}{\frac{5}{4}}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
2 hosil qilish uchun \frac{11}{4} va \frac{8}{11} ni ko'paytirish.
\sqrt{\frac{4}{\left(\frac{\frac{23}{12}-\frac{3}{2}}{\frac{5}{4}}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
\sqrt{\frac{4}{\left(\frac{\frac{5}{12}}{\frac{5}{4}}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
\frac{5}{12} olish uchun \frac{23}{12} dan \frac{3}{2} ni ayirish.
\sqrt{\frac{4}{\left(\frac{5}{12}\times \frac{4}{5}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
\frac{5}{12} ni \frac{5}{4} ga bo'lish \frac{5}{12} ga k'paytirish \frac{5}{4} ga qaytarish.
\sqrt{\frac{4}{\left(\frac{1}{3}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
\frac{1}{3} hosil qilish uchun \frac{5}{12} va \frac{4}{5} ni ko'paytirish.
\sqrt{\frac{4}{\frac{1}{9}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
2 daraja ko‘rsatkichini \frac{1}{3} ga hisoblang va \frac{1}{9} ni qiymatni oling.
\sqrt{4\times 9}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
4 ni \frac{1}{9} ga bo'lish 4 ga k'paytirish \frac{1}{9} ga qaytarish.
\sqrt{36}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
36 hosil qilish uchun 4 va 9 ni ko'paytirish.
6-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
36 ning kvadrat ildizini hisoblab, 6 natijaga ega bo‘ling.
6-\sqrt{10+\frac{\frac{1}{2}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
1 daraja ko‘rsatkichini \frac{1}{2} ga hisoblang va \frac{1}{2} ni qiymatni oling.
6-\sqrt{10+\frac{\frac{1}{2}+\frac{12}{13}\times \frac{13}{12}}{\frac{8}{3}}}
\frac{13}{12} olish uchun \frac{5}{4} dan \frac{1}{6} ni ayirish.
6-\sqrt{10+\frac{\frac{1}{2}+1}{\frac{8}{3}}}
1 hosil qilish uchun \frac{12}{13} va \frac{13}{12} ni ko'paytirish.
6-\sqrt{10+\frac{\frac{3}{2}}{\frac{8}{3}}}
\frac{3}{2} olish uchun \frac{1}{2} va 1'ni qo'shing.
6-\sqrt{10+\frac{3}{2}\times \frac{3}{8}}
\frac{3}{2} ni \frac{8}{3} ga bo'lish \frac{3}{2} ga k'paytirish \frac{8}{3} ga qaytarish.
6-\sqrt{10+\frac{9}{16}}
\frac{9}{16} hosil qilish uchun \frac{3}{2} va \frac{3}{8} ni ko'paytirish.
6-\sqrt{\frac{169}{16}}
\frac{169}{16} olish uchun 10 va \frac{9}{16}'ni qo'shing.
6-\frac{13}{4}
\frac{169}{16} boʻlinmasining kvadrat ildizini \frac{\sqrt{169}}{\sqrt{16}} kvadrat ildizlarining boʻlinmasi sifatida qayta yozing. Surat va maxrajni kvadrat ildizdan chiqaring.
\frac{11}{4}
\frac{11}{4} olish uchun 6 dan \frac{13}{4} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}