x uchun yechish
x=\frac{7}{15}\approx 0,466666667
Grafik
Baham ko'rish
Klipbordga nusxa olish
\sqrt{\frac{4}{3}+\frac{1}{9}-\frac{1}{12}}=3x\left(\frac{1}{3}+\frac{1}{2}\right)
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
\sqrt{\frac{12}{9}+\frac{1}{9}-\frac{1}{12}}=3x\left(\frac{1}{3}+\frac{1}{2}\right)
3 va 9 ning eng kichik umumiy karralisi 9 ga teng. \frac{4}{3} va \frac{1}{9} ni 9 maxraj bilan kasrlarga aylantirib oling.
\sqrt{\frac{12+1}{9}-\frac{1}{12}}=3x\left(\frac{1}{3}+\frac{1}{2}\right)
\frac{12}{9} va \frac{1}{9} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\sqrt{\frac{13}{9}-\frac{1}{12}}=3x\left(\frac{1}{3}+\frac{1}{2}\right)
13 olish uchun 12 va 1'ni qo'shing.
\sqrt{\frac{52}{36}-\frac{3}{36}}=3x\left(\frac{1}{3}+\frac{1}{2}\right)
9 va 12 ning eng kichik umumiy karralisi 36 ga teng. \frac{13}{9} va \frac{1}{12} ni 36 maxraj bilan kasrlarga aylantirib oling.
\sqrt{\frac{52-3}{36}}=3x\left(\frac{1}{3}+\frac{1}{2}\right)
\frac{52}{36} va \frac{3}{36} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\sqrt{\frac{49}{36}}=3x\left(\frac{1}{3}+\frac{1}{2}\right)
49 olish uchun 52 dan 3 ni ayirish.
\frac{7}{6}=3x\left(\frac{1}{3}+\frac{1}{2}\right)
\frac{49}{36} boʻlinmasining kvadrat ildizini \frac{\sqrt{49}}{\sqrt{36}} kvadrat ildizlarining boʻlinmasi sifatida qayta yozing. Surat va maxrajni kvadrat ildizdan chiqaring.
\frac{7}{6}=3x\left(\frac{2}{6}+\frac{3}{6}\right)
3 va 2 ning eng kichik umumiy karralisi 6 ga teng. \frac{1}{3} va \frac{1}{2} ni 6 maxraj bilan kasrlarga aylantirib oling.
\frac{7}{6}=3x\times \frac{2+3}{6}
\frac{2}{6} va \frac{3}{6} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{7}{6}=3x\times \frac{5}{6}
5 olish uchun 2 va 3'ni qo'shing.
\frac{7}{6}=\frac{3\times 5}{6}x
3\times \frac{5}{6} ni yagona kasrga aylantiring.
\frac{7}{6}=\frac{15}{6}x
15 hosil qilish uchun 3 va 5 ni ko'paytirish.
\frac{7}{6}=\frac{5}{2}x
\frac{15}{6} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{5}{2}x=\frac{7}{6}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x=\frac{7}{6}\times \frac{2}{5}
Ikki tarafini \frac{2}{5} va teskari kasri \frac{5}{2} ga ko‘paytiring.
x=\frac{7\times 2}{6\times 5}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{7}{6} ni \frac{2}{5} ga ko‘paytiring.
x=\frac{14}{30}
\frac{7\times 2}{6\times 5} kasridagi ko‘paytirishlarni bajaring.
x=\frac{7}{15}
\frac{14}{30} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}