x uchun yechish
x=\frac{\sqrt{15}+30}{120}\approx 0,282274861
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{\sqrt{3}}{\sqrt{5}}\left(x+1\right)+\sqrt{\frac{5}{3}}\left(x-1\right)=\frac{1}{15}
\sqrt{\frac{3}{5}} boʻlinmasining kvadrat ildizini \frac{\sqrt{3}}{\sqrt{5}} kvadrat ildizlarining boʻlinmasi sifatida qayta yozing.
\frac{\sqrt{3}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\left(x+1\right)+\sqrt{\frac{5}{3}}\left(x-1\right)=\frac{1}{15}
\frac{\sqrt{3}}{\sqrt{5}} maxrajini \sqrt{5} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\sqrt{3}\sqrt{5}}{5}\left(x+1\right)+\sqrt{\frac{5}{3}}\left(x-1\right)=\frac{1}{15}
\sqrt{5} kvadrati – 5.
\frac{\sqrt{15}}{5}\left(x+1\right)+\sqrt{\frac{5}{3}}\left(x-1\right)=\frac{1}{15}
\sqrt{3} va \sqrt{5} ni koʻpaytirish uchun kvadrat ildiz ichidagi sonlarni koʻpaytiring.
\frac{\sqrt{15}\left(x+1\right)}{5}+\sqrt{\frac{5}{3}}\left(x-1\right)=\frac{1}{15}
\frac{\sqrt{15}}{5}\left(x+1\right) ni yagona kasrga aylantiring.
\frac{\sqrt{15}\left(x+1\right)}{5}+\frac{\sqrt{5}}{\sqrt{3}}\left(x-1\right)=\frac{1}{15}
\sqrt{\frac{5}{3}} boʻlinmasining kvadrat ildizini \frac{\sqrt{5}}{\sqrt{3}} kvadrat ildizlarining boʻlinmasi sifatida qayta yozing.
\frac{\sqrt{15}\left(x+1\right)}{5}+\frac{\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\left(x-1\right)=\frac{1}{15}
\frac{\sqrt{5}}{\sqrt{3}} maxrajini \sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\sqrt{15}\left(x+1\right)}{5}+\frac{\sqrt{5}\sqrt{3}}{3}\left(x-1\right)=\frac{1}{15}
\sqrt{3} kvadrati – 3.
\frac{\sqrt{15}\left(x+1\right)}{5}+\frac{\sqrt{15}}{3}\left(x-1\right)=\frac{1}{15}
\sqrt{5} va \sqrt{3} ni koʻpaytirish uchun kvadrat ildiz ichidagi sonlarni koʻpaytiring.
\frac{\sqrt{15}\left(x+1\right)}{5}+\frac{\sqrt{15}\left(x-1\right)}{3}=\frac{1}{15}
\frac{\sqrt{15}}{3}\left(x-1\right) ni yagona kasrga aylantiring.
\frac{3\sqrt{15}\left(x+1\right)}{15}+\frac{5\sqrt{15}\left(x-1\right)}{15}=\frac{1}{15}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 5 va 3 ning eng kichik umumiy karralisi 15. \frac{\sqrt{15}\left(x+1\right)}{5} ni \frac{3}{3} marotabaga ko'paytirish. \frac{\sqrt{15}\left(x-1\right)}{3} ni \frac{5}{5} marotabaga ko'paytirish.
\frac{3\sqrt{15}\left(x+1\right)+5\sqrt{15}\left(x-1\right)}{15}=\frac{1}{15}
\frac{3\sqrt{15}\left(x+1\right)}{15} va \frac{5\sqrt{15}\left(x-1\right)}{15} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{3\sqrt{15}x+3\sqrt{15}+5\sqrt{15}x-5\sqrt{15}}{15}=\frac{1}{15}
3\sqrt{15}\left(x+1\right)+5\sqrt{15}\left(x-1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{8\sqrt{15}x-2\sqrt{15}}{15}=\frac{1}{15}
3\sqrt{15}x+3\sqrt{15}+5\sqrt{15}x-5\sqrt{15} kabi iboralarga o‘xshab birlashtiring.
8\sqrt{15}x-2\sqrt{15}=\frac{1}{15}\times 15
Ikkala tarafini 15 ga ko‘paytiring.
8\sqrt{15}x-2\sqrt{15}=1
15 va 15 ni qisqartiring.
8\sqrt{15}x=1+2\sqrt{15}
2\sqrt{15} ni ikki tarafga qo’shing.
8\sqrt{15}x=2\sqrt{15}+1
Tenglama standart shaklda.
\frac{8\sqrt{15}x}{8\sqrt{15}}=\frac{2\sqrt{15}+1}{8\sqrt{15}}
Ikki tarafini 8\sqrt{15} ga bo‘ling.
x=\frac{2\sqrt{15}+1}{8\sqrt{15}}
8\sqrt{15} ga bo'lish 8\sqrt{15} ga ko'paytirishni bekor qiladi.
x=\frac{\sqrt{15}}{120}+\frac{1}{4}
1+2\sqrt{15} ni 8\sqrt{15} ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}