x uchun yechish
x=\frac{4\left(y^{2}+6\right)}{3}
y\geq 0
x uchun yechish (complex solution)
x=\frac{4\left(y^{2}+6\right)}{3}
arg(y)<\pi \text{ or }y=0
y uchun yechish (complex solution)
y=\frac{\sqrt{3\left(x-8\right)}}{2}
y uchun yechish
y=\frac{\sqrt{3\left(x-8\right)}}{2}
x\geq 8
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{3}{4}x-6=y^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
\frac{3}{4}x-6-\left(-6\right)=y^{2}-\left(-6\right)
6 ni tenglamaning ikkala tarafiga qo'shish.
\frac{3}{4}x=y^{2}-\left(-6\right)
O‘zidan -6 ayirilsa 0 qoladi.
\frac{3}{4}x=y^{2}+6
y^{2} dan -6 ni ayirish.
\frac{\frac{3}{4}x}{\frac{3}{4}}=\frac{y^{2}+6}{\frac{3}{4}}
Tenglamaning ikki tarafini \frac{3}{4} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
x=\frac{y^{2}+6}{\frac{3}{4}}
\frac{3}{4} ga bo'lish \frac{3}{4} ga ko'paytirishni bekor qiladi.
x=\frac{4y^{2}}{3}+8
y^{2}+6 ni \frac{3}{4} ga bo'lish y^{2}+6 ga k'paytirish \frac{3}{4} ga qaytarish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}