Baholash
\frac{\sqrt{290}}{10}\approx 1,702938637
Baham ko'rish
Klipbordga nusxa olish
\frac{\sqrt{29}}{\sqrt{10}}
\sqrt{\frac{29}{10}} boʻlinmasining kvadrat ildizini \frac{\sqrt{29}}{\sqrt{10}} kvadrat ildizlarining boʻlinmasi sifatida qayta yozing.
\frac{\sqrt{29}\sqrt{10}}{\left(\sqrt{10}\right)^{2}}
\frac{\sqrt{29}}{\sqrt{10}} maxrajini \sqrt{10} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\sqrt{29}\sqrt{10}}{10}
\sqrt{10} kvadrati – 10.
\frac{\sqrt{290}}{10}
\sqrt{29} va \sqrt{10} ni koʻpaytirish uchun kvadrat ildiz ichidagi sonlarni koʻpaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}