Baholash
\frac{\sqrt{3}}{4}\approx 0,433012702
Baham ko'rish
Klipbordga nusxa olish
\sqrt{\frac{\frac{\frac{\frac{6}{10}+\frac{1}{10}}{\frac{7}{20}}-\left(\frac{6}{5}+\frac{7}{2}-\frac{14}{5}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
5 va 10 ning eng kichik umumiy karralisi 10 ga teng. \frac{3}{5} va \frac{1}{10} ni 10 maxraj bilan kasrlarga aylantirib oling.
\sqrt{\frac{\frac{\frac{\frac{6+1}{10}}{\frac{7}{20}}-\left(\frac{6}{5}+\frac{7}{2}-\frac{14}{5}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
\frac{6}{10} va \frac{1}{10} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\sqrt{\frac{\frac{\frac{\frac{7}{10}}{\frac{7}{20}}-\left(\frac{6}{5}+\frac{7}{2}-\frac{14}{5}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
7 olish uchun 6 va 1'ni qo'shing.
\sqrt{\frac{\frac{\frac{7}{10}\times \frac{20}{7}-\left(\frac{6}{5}+\frac{7}{2}-\frac{14}{5}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
\frac{7}{10} ni \frac{7}{20} ga bo'lish \frac{7}{10} ga k'paytirish \frac{7}{20} ga qaytarish.
\sqrt{\frac{\frac{\frac{7\times 20}{10\times 7}-\left(\frac{6}{5}+\frac{7}{2}-\frac{14}{5}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{7}{10} ni \frac{20}{7} ga ko‘paytiring.
\sqrt{\frac{\frac{\frac{20}{10}-\left(\frac{6}{5}+\frac{7}{2}-\frac{14}{5}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Surat va maxrajdagi ikkala 7 ni qisqartiring.
\sqrt{\frac{\frac{2-\left(\frac{6}{5}+\frac{7}{2}-\frac{14}{5}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
2 ni olish uchun 20 ni 10 ga bo‘ling.
\sqrt{\frac{\frac{2-\left(\frac{12}{10}+\frac{35}{10}-\frac{14}{5}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
5 va 2 ning eng kichik umumiy karralisi 10 ga teng. \frac{6}{5} va \frac{7}{2} ni 10 maxraj bilan kasrlarga aylantirib oling.
\sqrt{\frac{\frac{2-\left(\frac{12+35}{10}-\frac{14}{5}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
\frac{12}{10} va \frac{35}{10} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\sqrt{\frac{\frac{2-\left(\frac{47}{10}-\frac{14}{5}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
47 olish uchun 12 va 35'ni qo'shing.
\sqrt{\frac{\frac{2-\left(\frac{47}{10}-\frac{28}{10}\right)}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
10 va 5 ning eng kichik umumiy karralisi 10 ga teng. \frac{47}{10} va \frac{14}{5} ni 10 maxraj bilan kasrlarga aylantirib oling.
\sqrt{\frac{\frac{2-\frac{47-28}{10}}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
\frac{47}{10} va \frac{28}{10} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\sqrt{\frac{\frac{2-\frac{19}{10}}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
19 olish uchun 47 dan 28 ni ayirish.
\sqrt{\frac{\frac{\frac{20}{10}-\frac{19}{10}}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
2 ni \frac{20}{10} kasrga o‘giring.
\sqrt{\frac{\frac{\frac{20-19}{10}}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
\frac{20}{10} va \frac{19}{10} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\sqrt{\frac{\frac{\frac{1}{10}}{\frac{2}{3}}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
1 olish uchun 20 dan 19 ni ayirish.
\sqrt{\frac{\frac{1}{10}\times \frac{3}{2}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
\frac{1}{10} ni \frac{2}{3} ga bo'lish \frac{1}{10} ga k'paytirish \frac{2}{3} ga qaytarish.
\sqrt{\frac{\frac{1\times 3}{10\times 2}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{1}{10} ni \frac{3}{2} ga ko‘paytiring.
\sqrt{\frac{\frac{3}{20}-\frac{1}{15}}{\left(\frac{2}{3}\right)^{2}}}
\frac{1\times 3}{10\times 2} kasridagi ko‘paytirishlarni bajaring.
\sqrt{\frac{\frac{9}{60}-\frac{4}{60}}{\left(\frac{2}{3}\right)^{2}}}
20 va 15 ning eng kichik umumiy karralisi 60 ga teng. \frac{3}{20} va \frac{1}{15} ni 60 maxraj bilan kasrlarga aylantirib oling.
\sqrt{\frac{\frac{9-4}{60}}{\left(\frac{2}{3}\right)^{2}}}
\frac{9}{60} va \frac{4}{60} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\sqrt{\frac{\frac{5}{60}}{\left(\frac{2}{3}\right)^{2}}}
5 olish uchun 9 dan 4 ni ayirish.
\sqrt{\frac{\frac{1}{12}}{\left(\frac{2}{3}\right)^{2}}}
\frac{5}{60} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\sqrt{\frac{\frac{1}{12}}{\frac{4}{9}}}
2 daraja ko‘rsatkichini \frac{2}{3} ga hisoblang va \frac{4}{9} ni qiymatni oling.
\sqrt{\frac{1}{12}\times \frac{9}{4}}
\frac{1}{12} ni \frac{4}{9} ga bo'lish \frac{1}{12} ga k'paytirish \frac{4}{9} ga qaytarish.
\sqrt{\frac{1\times 9}{12\times 4}}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{1}{12} ni \frac{9}{4} ga ko‘paytiring.
\sqrt{\frac{9}{48}}
\frac{1\times 9}{12\times 4} kasridagi ko‘paytirishlarni bajaring.
\sqrt{\frac{3}{16}}
\frac{9}{48} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{\sqrt{3}}{\sqrt{16}}
\sqrt{\frac{3}{16}} boʻlinmasining kvadrat ildizini \frac{\sqrt{3}}{\sqrt{16}} kvadrat ildizlarining boʻlinmasi sifatida qayta yozing.
\frac{\sqrt{3}}{4}
16 ning kvadrat ildizini hisoblab, 4 natijaga ega bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}