Asosiy tarkibga oʻtish
b uchun yechish
Tick mark Image
a uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\sqrt{b}\left(1-\left(\sin(a)\right)^{2}\right)=\sin(a)
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\sqrt{b}-\sqrt{b}\left(\sin(a)\right)^{2}=\sin(a)
\sqrt{b} ga 1-\left(\sin(a)\right)^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(1-\left(\sin(a)\right)^{2}\right)\sqrt{b}=\sin(a)
b'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(-\left(\sin(a)\right)^{2}+1\right)\sqrt{b}}{-\left(\sin(a)\right)^{2}+1}=\frac{\sin(a)}{-\left(\sin(a)\right)^{2}+1}
Ikki tarafini 1-\left(\sin(a)\right)^{2} ga bo‘ling.
\sqrt{b}=\frac{\sin(a)}{-\left(\sin(a)\right)^{2}+1}
1-\left(\sin(a)\right)^{2} ga bo'lish 1-\left(\sin(a)\right)^{2} ga ko'paytirishni bekor qiladi.
\sqrt{b}=\frac{\tan(a)}{\cos(a)}
\sin(a) ni 1-\left(\sin(a)\right)^{2} ga bo'lish.
b=\frac{\left(\tan(a)\right)^{2}}{\left(\cos(a)\right)^{2}}
Tenglamaning ikkala taraf kvadratini chiqarish.