Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Omil
Tick mark Image

Baham ko'rish

\sin(\frac{7}{12}\times 2\pi )
\frac{105}{180} ulushini 15 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\sin(\frac{7}{6}\pi )
\frac{7}{6} hosil qilish uchun \frac{7}{12} va 2 ni ko'paytirish.
\sin(\pi +\frac{\pi }{6})=\sin(\pi )\cos(\frac{\pi }{6})+\sin(\frac{\pi }{6})\cos(\pi )
Natijani olish uchun x=\pi va y=\frac{\pi }{6} boʻlganda, \sin(x+y)=\sin(x)\cos(y)+\sin(y)\cos(x) formulasidan foydalaning.
0\cos(\frac{\pi }{6})+\sin(\frac{\pi }{6})\cos(\pi )
Trigonometrik qiymatlar jadvaldan \sin(\pi ) qiymatini oling.
0\times \frac{\sqrt{3}}{2}+\sin(\frac{\pi }{6})\cos(\pi )
Trigonometrik qiymatlar jadvaldan \cos(\frac{\pi }{6}) qiymatini oling.
0\times \frac{\sqrt{3}}{2}+\frac{1}{2}\cos(\pi )
Trigonometrik qiymatlar jadvaldan \sin(\frac{\pi }{6}) qiymatini oling.
0\times \frac{\sqrt{3}}{2}+\frac{1}{2}\left(-1\right)
Trigonometrik qiymatlar jadvaldan \cos(\pi ) qiymatini oling.
-\frac{1}{2}
Hisoblarni amalga oshiring.