Baholash
-\frac{1}{2}=-0,5
Omil
-\frac{1}{2} = -0,5
Baham ko'rish
Klipbordga nusxa olish
\sin(\frac{7}{12}\times 2\pi )
\frac{105}{180} ulushini 15 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\sin(\frac{7}{6}\pi )
\frac{7}{6} hosil qilish uchun \frac{7}{12} va 2 ni ko'paytirish.
\sin(\pi +\frac{\pi }{6})=\sin(\pi )\cos(\frac{\pi }{6})+\sin(\frac{\pi }{6})\cos(\pi )
Natijani olish uchun x=\pi va y=\frac{\pi }{6} boʻlganda, \sin(x+y)=\sin(x)\cos(y)+\sin(y)\cos(x) formulasidan foydalaning.
0\cos(\frac{\pi }{6})+\sin(\frac{\pi }{6})\cos(\pi )
Trigonometrik qiymatlar jadvaldan \sin(\pi ) qiymatini oling.
0\times \frac{\sqrt{3}}{2}+\sin(\frac{\pi }{6})\cos(\pi )
Trigonometrik qiymatlar jadvaldan \cos(\frac{\pi }{6}) qiymatini oling.
0\times \frac{\sqrt{3}}{2}+\frac{1}{2}\cos(\pi )
Trigonometrik qiymatlar jadvaldan \sin(\frac{\pi }{6}) qiymatini oling.
0\times \frac{\sqrt{3}}{2}+\frac{1}{2}\left(-1\right)
Trigonometrik qiymatlar jadvaldan \cos(\pi ) qiymatini oling.
-\frac{1}{2}
Hisoblarni amalga oshiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}