Asosiy tarkibga oʻtish
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\sin(\frac{\pi }{4}-\frac{\pi }{6})=\sin(\frac{\pi }{4})\cos(\frac{\pi }{6})-\sin(\frac{\pi }{6})\cos(\frac{\pi }{4})
Natijani olish uchun x=\frac{\pi }{4} va y=\frac{\pi }{6} boʻlganda, \sin(x-y)=\sin(x)\cos(y)-\sin(y)\cos(x) formulasidan foydalaning.
\frac{\sqrt{2}}{2}\cos(\frac{\pi }{6})-\sin(\frac{\pi }{6})\cos(\frac{\pi }{4})
Trigonometrik qiymatlar jadvaldan \sin(\frac{\pi }{4}) qiymatini oling.
\frac{\sqrt{2}}{2}\times \frac{\sqrt{3}}{2}-\sin(\frac{\pi }{6})\cos(\frac{\pi }{4})
Trigonometrik qiymatlar jadvaldan \cos(\frac{\pi }{6}) qiymatini oling.
\frac{\sqrt{2}}{2}\times \frac{\sqrt{3}}{2}-\frac{1}{2}\cos(\frac{\pi }{4})
Trigonometrik qiymatlar jadvaldan \sin(\frac{\pi }{6}) qiymatini oling.
\frac{\sqrt{2}}{2}\times \frac{\sqrt{3}}{2}-\frac{1}{2}\times \frac{\sqrt{2}}{2}
Trigonometrik qiymatlar jadvaldan \cos(\frac{\pi }{4}) qiymatini oling.
\frac{\sqrt{6}-\sqrt{2}}{4}
Hisoblarni amalga oshiring.