Asosiy tarkibga oʻtish
σ_x uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\sigma _{x}^{2}=\left(-2\right)^{2}\times \frac{4}{9}+\left(0\times 0\right)^{2}\times \frac{3}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
-2 olish uchun -2 dan 0 ni ayirish.
\sigma _{x}^{2}=4\times \frac{4}{9}+\left(0\times 0\right)^{2}\times \frac{3}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
2 daraja ko‘rsatkichini -2 ga hisoblang va 4 ni qiymatni oling.
\sigma _{x}^{2}=\frac{16}{9}+\left(0\times 0\right)^{2}\times \frac{3}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
\frac{16}{9} hosil qilish uchun 4 va \frac{4}{9} ni ko'paytirish.
\sigma _{x}^{2}=\frac{16}{9}+0^{2}\times \frac{3}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
0 hosil qilish uchun 0 va 0 ni ko'paytirish.
\sigma _{x}^{2}=\frac{16}{9}+0\times \frac{3}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
2 daraja ko‘rsatkichini 0 ga hisoblang va 0 ni qiymatni oling.
\sigma _{x}^{2}=\frac{16}{9}+0\times \frac{1}{3}+\left(1\times 9\right)^{2}\times \frac{2}{9}
\frac{3}{9} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\sigma _{x}^{2}=\frac{16}{9}+0+\left(1\times 9\right)^{2}\times \frac{2}{9}
0 hosil qilish uchun 0 va \frac{1}{3} ni ko'paytirish.
\sigma _{x}^{2}=\frac{16}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
\frac{16}{9} olish uchun \frac{16}{9} va 0'ni qo'shing.
\sigma _{x}^{2}=\frac{16}{9}+9^{2}\times \frac{2}{9}
9 hosil qilish uchun 1 va 9 ni ko'paytirish.
\sigma _{x}^{2}=\frac{16}{9}+81\times \frac{2}{9}
2 daraja ko‘rsatkichini 9 ga hisoblang va 81 ni qiymatni oling.
\sigma _{x}^{2}=\frac{16}{9}+18
18 hosil qilish uchun 81 va \frac{2}{9} ni ko'paytirish.
\sigma _{x}^{2}=\frac{178}{9}
\frac{178}{9} olish uchun \frac{16}{9} va 18'ni qo'shing.
\sigma _{x}=\frac{\sqrt{178}}{3} \sigma _{x}=-\frac{\sqrt{178}}{3}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
\sigma _{x}^{2}=\left(-2\right)^{2}\times \frac{4}{9}+\left(0\times 0\right)^{2}\times \frac{3}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
-2 olish uchun -2 dan 0 ni ayirish.
\sigma _{x}^{2}=4\times \frac{4}{9}+\left(0\times 0\right)^{2}\times \frac{3}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
2 daraja ko‘rsatkichini -2 ga hisoblang va 4 ni qiymatni oling.
\sigma _{x}^{2}=\frac{16}{9}+\left(0\times 0\right)^{2}\times \frac{3}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
\frac{16}{9} hosil qilish uchun 4 va \frac{4}{9} ni ko'paytirish.
\sigma _{x}^{2}=\frac{16}{9}+0^{2}\times \frac{3}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
0 hosil qilish uchun 0 va 0 ni ko'paytirish.
\sigma _{x}^{2}=\frac{16}{9}+0\times \frac{3}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
2 daraja ko‘rsatkichini 0 ga hisoblang va 0 ni qiymatni oling.
\sigma _{x}^{2}=\frac{16}{9}+0\times \frac{1}{3}+\left(1\times 9\right)^{2}\times \frac{2}{9}
\frac{3}{9} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\sigma _{x}^{2}=\frac{16}{9}+0+\left(1\times 9\right)^{2}\times \frac{2}{9}
0 hosil qilish uchun 0 va \frac{1}{3} ni ko'paytirish.
\sigma _{x}^{2}=\frac{16}{9}+\left(1\times 9\right)^{2}\times \frac{2}{9}
\frac{16}{9} olish uchun \frac{16}{9} va 0'ni qo'shing.
\sigma _{x}^{2}=\frac{16}{9}+9^{2}\times \frac{2}{9}
9 hosil qilish uchun 1 va 9 ni ko'paytirish.
\sigma _{x}^{2}=\frac{16}{9}+81\times \frac{2}{9}
2 daraja ko‘rsatkichini 9 ga hisoblang va 81 ni qiymatni oling.
\sigma _{x}^{2}=\frac{16}{9}+18
18 hosil qilish uchun 81 va \frac{2}{9} ni ko'paytirish.
\sigma _{x}^{2}=\frac{178}{9}
\frac{178}{9} olish uchun \frac{16}{9} va 18'ni qo'shing.
\sigma _{x}^{2}-\frac{178}{9}=0
Ikkala tarafdan \frac{178}{9} ni ayirish.
\sigma _{x}=\frac{0±\sqrt{0^{2}-4\left(-\frac{178}{9}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -\frac{178}{9} ni c bilan almashtiring.
\sigma _{x}=\frac{0±\sqrt{-4\left(-\frac{178}{9}\right)}}{2}
0 kvadratini chiqarish.
\sigma _{x}=\frac{0±\sqrt{\frac{712}{9}}}{2}
-4 ni -\frac{178}{9} marotabaga ko'paytirish.
\sigma _{x}=\frac{0±\frac{2\sqrt{178}}{3}}{2}
\frac{712}{9} ning kvadrat ildizini chiqarish.
\sigma _{x}=\frac{\sqrt{178}}{3}
\sigma _{x}=\frac{0±\frac{2\sqrt{178}}{3}}{2} tenglamasini yeching, bunda ± musbat.
\sigma _{x}=-\frac{\sqrt{178}}{3}
\sigma _{x}=\frac{0±\frac{2\sqrt{178}}{3}}{2} tenglamasini yeching, bunda ± manfiy.
\sigma _{x}=\frac{\sqrt{178}}{3} \sigma _{x}=-\frac{\sqrt{178}}{3}
Tenglama yechildi.