Asosiy tarkibga oʻtish
σ_x uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\sigma _{x}^{2}=\left(-2\right)^{2}\times \frac{4}{9}+\left(0\times 0\right)^{2}\times \frac{3}{9}+\left(1\times 0\right)^{2}+\frac{2}{9}
-2 olish uchun -2 dan 0 ni ayirish.
\sigma _{x}^{2}=4\times \frac{4}{9}+\left(0\times 0\right)^{2}\times \frac{3}{9}+\left(1\times 0\right)^{2}+\frac{2}{9}
2 daraja ko‘rsatkichini -2 ga hisoblang va 4 ni qiymatni oling.
\sigma _{x}^{2}=\frac{16}{9}+\left(0\times 0\right)^{2}\times \frac{3}{9}+\left(1\times 0\right)^{2}+\frac{2}{9}
\frac{16}{9} hosil qilish uchun 4 va \frac{4}{9} ni ko'paytirish.
\sigma _{x}^{2}=\frac{16}{9}+0^{2}\times \frac{3}{9}+\left(1\times 0\right)^{2}+\frac{2}{9}
0 hosil qilish uchun 0 va 0 ni ko'paytirish.
\sigma _{x}^{2}=\frac{16}{9}+0\times \frac{3}{9}+\left(1\times 0\right)^{2}+\frac{2}{9}
2 daraja ko‘rsatkichini 0 ga hisoblang va 0 ni qiymatni oling.
\sigma _{x}^{2}=\frac{16}{9}+0\times \frac{1}{3}+\left(1\times 0\right)^{2}+\frac{2}{9}
\frac{3}{9} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\sigma _{x}^{2}=\frac{16}{9}+0+\left(1\times 0\right)^{2}+\frac{2}{9}
0 hosil qilish uchun 0 va \frac{1}{3} ni ko'paytirish.
\sigma _{x}^{2}=\frac{16}{9}+\left(1\times 0\right)^{2}+\frac{2}{9}
\frac{16}{9} olish uchun \frac{16}{9} va 0'ni qo'shing.
\sigma _{x}^{2}=\frac{16}{9}+0^{2}+\frac{2}{9}
0 hosil qilish uchun 1 va 0 ni ko'paytirish.
\sigma _{x}^{2}=\frac{16}{9}+0+\frac{2}{9}
2 daraja ko‘rsatkichini 0 ga hisoblang va 0 ni qiymatni oling.
\sigma _{x}^{2}=\frac{16}{9}+\frac{2}{9}
\frac{16}{9} olish uchun \frac{16}{9} va 0'ni qo'shing.
\sigma _{x}^{2}=2
2 olish uchun \frac{16}{9} va \frac{2}{9}'ni qo'shing.
\sigma _{x}=\sqrt{2} \sigma _{x}=-\sqrt{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
\sigma _{x}^{2}=\left(-2\right)^{2}\times \frac{4}{9}+\left(0\times 0\right)^{2}\times \frac{3}{9}+\left(1\times 0\right)^{2}+\frac{2}{9}
-2 olish uchun -2 dan 0 ni ayirish.
\sigma _{x}^{2}=4\times \frac{4}{9}+\left(0\times 0\right)^{2}\times \frac{3}{9}+\left(1\times 0\right)^{2}+\frac{2}{9}
2 daraja ko‘rsatkichini -2 ga hisoblang va 4 ni qiymatni oling.
\sigma _{x}^{2}=\frac{16}{9}+\left(0\times 0\right)^{2}\times \frac{3}{9}+\left(1\times 0\right)^{2}+\frac{2}{9}
\frac{16}{9} hosil qilish uchun 4 va \frac{4}{9} ni ko'paytirish.
\sigma _{x}^{2}=\frac{16}{9}+0^{2}\times \frac{3}{9}+\left(1\times 0\right)^{2}+\frac{2}{9}
0 hosil qilish uchun 0 va 0 ni ko'paytirish.
\sigma _{x}^{2}=\frac{16}{9}+0\times \frac{3}{9}+\left(1\times 0\right)^{2}+\frac{2}{9}
2 daraja ko‘rsatkichini 0 ga hisoblang va 0 ni qiymatni oling.
\sigma _{x}^{2}=\frac{16}{9}+0\times \frac{1}{3}+\left(1\times 0\right)^{2}+\frac{2}{9}
\frac{3}{9} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\sigma _{x}^{2}=\frac{16}{9}+0+\left(1\times 0\right)^{2}+\frac{2}{9}
0 hosil qilish uchun 0 va \frac{1}{3} ni ko'paytirish.
\sigma _{x}^{2}=\frac{16}{9}+\left(1\times 0\right)^{2}+\frac{2}{9}
\frac{16}{9} olish uchun \frac{16}{9} va 0'ni qo'shing.
\sigma _{x}^{2}=\frac{16}{9}+0^{2}+\frac{2}{9}
0 hosil qilish uchun 1 va 0 ni ko'paytirish.
\sigma _{x}^{2}=\frac{16}{9}+0+\frac{2}{9}
2 daraja ko‘rsatkichini 0 ga hisoblang va 0 ni qiymatni oling.
\sigma _{x}^{2}=\frac{16}{9}+\frac{2}{9}
\frac{16}{9} olish uchun \frac{16}{9} va 0'ni qo'shing.
\sigma _{x}^{2}=2
2 olish uchun \frac{16}{9} va \frac{2}{9}'ni qo'shing.
\sigma _{x}^{2}-2=0
Ikkala tarafdan 2 ni ayirish.
\sigma _{x}=\frac{0±\sqrt{0^{2}-4\left(-2\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -2 ni c bilan almashtiring.
\sigma _{x}=\frac{0±\sqrt{-4\left(-2\right)}}{2}
0 kvadratini chiqarish.
\sigma _{x}=\frac{0±\sqrt{8}}{2}
-4 ni -2 marotabaga ko'paytirish.
\sigma _{x}=\frac{0±2\sqrt{2}}{2}
8 ning kvadrat ildizini chiqarish.
\sigma _{x}=\sqrt{2}
\sigma _{x}=\frac{0±2\sqrt{2}}{2} tenglamasini yeching, bunda ± musbat.
\sigma _{x}=-\sqrt{2}
\sigma _{x}=\frac{0±2\sqrt{2}}{2} tenglamasini yeching, bunda ± manfiy.
\sigma _{x}=\sqrt{2} \sigma _{x}=-\sqrt{2}
Tenglama yechildi.