a uchun yechish
a=\frac{\sqrt{2}+1}{3}\approx 0,804737854
a=\frac{1-\sqrt{2}}{3}\approx -0,138071187
Baham ko'rish
Klipbordga nusxa olish
9a^{2}-6a-1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
a=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9\left(-1\right)}}{2\times 9}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 9 ni a, -6 ni b va -1 ni c bilan almashtiring.
a=\frac{-\left(-6\right)±\sqrt{36-4\times 9\left(-1\right)}}{2\times 9}
-6 kvadratini chiqarish.
a=\frac{-\left(-6\right)±\sqrt{36-36\left(-1\right)}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
a=\frac{-\left(-6\right)±\sqrt{36+36}}{2\times 9}
-36 ni -1 marotabaga ko'paytirish.
a=\frac{-\left(-6\right)±\sqrt{72}}{2\times 9}
36 ni 36 ga qo'shish.
a=\frac{-\left(-6\right)±6\sqrt{2}}{2\times 9}
72 ning kvadrat ildizini chiqarish.
a=\frac{6±6\sqrt{2}}{2\times 9}
-6 ning teskarisi 6 ga teng.
a=\frac{6±6\sqrt{2}}{18}
2 ni 9 marotabaga ko'paytirish.
a=\frac{6\sqrt{2}+6}{18}
a=\frac{6±6\sqrt{2}}{18} tenglamasini yeching, bunda ± musbat. 6 ni 6\sqrt{2} ga qo'shish.
a=\frac{\sqrt{2}+1}{3}
6+6\sqrt{2} ni 18 ga bo'lish.
a=\frac{6-6\sqrt{2}}{18}
a=\frac{6±6\sqrt{2}}{18} tenglamasini yeching, bunda ± manfiy. 6 dan 6\sqrt{2} ni ayirish.
a=\frac{1-\sqrt{2}}{3}
6-6\sqrt{2} ni 18 ga bo'lish.
a=\frac{\sqrt{2}+1}{3} a=\frac{1-\sqrt{2}}{3}
Tenglama yechildi.
9a^{2}-6a-1=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
9a^{2}-6a-1-\left(-1\right)=-\left(-1\right)
1 ni tenglamaning ikkala tarafiga qo'shish.
9a^{2}-6a=-\left(-1\right)
O‘zidan -1 ayirilsa 0 qoladi.
9a^{2}-6a=1
0 dan -1 ni ayirish.
\frac{9a^{2}-6a}{9}=\frac{1}{9}
Ikki tarafini 9 ga bo‘ling.
a^{2}+\left(-\frac{6}{9}\right)a=\frac{1}{9}
9 ga bo'lish 9 ga ko'paytirishni bekor qiladi.
a^{2}-\frac{2}{3}a=\frac{1}{9}
\frac{-6}{9} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
a^{2}-\frac{2}{3}a+\left(-\frac{1}{3}\right)^{2}=\frac{1}{9}+\left(-\frac{1}{3}\right)^{2}
-\frac{2}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{3} olish uchun. Keyin, -\frac{1}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
a^{2}-\frac{2}{3}a+\frac{1}{9}=\frac{1+1}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{3} kvadratini chiqarish.
a^{2}-\frac{2}{3}a+\frac{1}{9}=\frac{2}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{9} ni \frac{1}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(a-\frac{1}{3}\right)^{2}=\frac{2}{9}
a^{2}-\frac{2}{3}a+\frac{1}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(a-\frac{1}{3}\right)^{2}}=\sqrt{\frac{2}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
a-\frac{1}{3}=\frac{\sqrt{2}}{3} a-\frac{1}{3}=-\frac{\sqrt{2}}{3}
Qisqartirish.
a=\frac{\sqrt{2}+1}{3} a=\frac{1-\sqrt{2}}{3}
\frac{1}{3} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}