Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

205x^{2}+32x-21=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-32±\sqrt{32^{2}-4\times 205\left(-21\right)}}{2\times 205}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-32±\sqrt{1024-4\times 205\left(-21\right)}}{2\times 205}
32 kvadratini chiqarish.
x=\frac{-32±\sqrt{1024-820\left(-21\right)}}{2\times 205}
-4 ni 205 marotabaga ko'paytirish.
x=\frac{-32±\sqrt{1024+17220}}{2\times 205}
-820 ni -21 marotabaga ko'paytirish.
x=\frac{-32±\sqrt{18244}}{2\times 205}
1024 ni 17220 ga qo'shish.
x=\frac{-32±2\sqrt{4561}}{2\times 205}
18244 ning kvadrat ildizini chiqarish.
x=\frac{-32±2\sqrt{4561}}{410}
2 ni 205 marotabaga ko'paytirish.
x=\frac{2\sqrt{4561}-32}{410}
x=\frac{-32±2\sqrt{4561}}{410} tenglamasini yeching, bunda ± musbat. -32 ni 2\sqrt{4561} ga qo'shish.
x=\frac{\sqrt{4561}-16}{205}
-32+2\sqrt{4561} ni 410 ga bo'lish.
x=\frac{-2\sqrt{4561}-32}{410}
x=\frac{-32±2\sqrt{4561}}{410} tenglamasini yeching, bunda ± manfiy. -32 dan 2\sqrt{4561} ni ayirish.
x=\frac{-\sqrt{4561}-16}{205}
-32-2\sqrt{4561} ni 410 ga bo'lish.
205x^{2}+32x-21=205\left(x-\frac{\sqrt{4561}-16}{205}\right)\left(x-\frac{-\sqrt{4561}-16}{205}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-16+\sqrt{4561}}{205} ga va x_{2} uchun \frac{-16-\sqrt{4561}}{205} ga bo‘ling.