Asosiy tarkibga oʻtish
I uchun yechish (complex solution)
Tick mark Image
I uchun yechish
Tick mark Image
a uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

36If\times \frac{\left(\sqrt{7}-2\right)\left(\sqrt{7}-2\right)}{\left(\sqrt{7}+2\right)\left(\sqrt{7}-2\right)}=a\sqrt{7}+b
\frac{\sqrt{7}-2}{\sqrt{7}+2} maxrajini \sqrt{7}-2 orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
36If\times \frac{\left(\sqrt{7}-2\right)\left(\sqrt{7}-2\right)}{\left(\sqrt{7}\right)^{2}-2^{2}}=a\sqrt{7}+b
Hisoblang: \left(\sqrt{7}+2\right)\left(\sqrt{7}-2\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
36If\times \frac{\left(\sqrt{7}-2\right)\left(\sqrt{7}-2\right)}{7-4}=a\sqrt{7}+b
\sqrt{7} kvadratini chiqarish. 2 kvadratini chiqarish.
36If\times \frac{\left(\sqrt{7}-2\right)\left(\sqrt{7}-2\right)}{3}=a\sqrt{7}+b
3 olish uchun 7 dan 4 ni ayirish.
36If\times \frac{\left(\sqrt{7}-2\right)^{2}}{3}=a\sqrt{7}+b
\left(\sqrt{7}-2\right)^{2} hosil qilish uchun \sqrt{7}-2 va \sqrt{7}-2 ni ko'paytirish.
36If\times \frac{\left(\sqrt{7}\right)^{2}-4\sqrt{7}+4}{3}=a\sqrt{7}+b
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(\sqrt{7}-2\right)^{2} kengaytirilishi uchun ishlating.
36If\times \frac{7-4\sqrt{7}+4}{3}=a\sqrt{7}+b
\sqrt{7} kvadrati – 7.
36If\times \frac{11-4\sqrt{7}}{3}=a\sqrt{7}+b
11 olish uchun 7 va 4'ni qo'shing.
12\left(11-4\sqrt{7}\right)If=a\sqrt{7}+b
36 va 3 ichida eng katta umumiy 3 faktorini bekor qiling.
\left(132-48\sqrt{7}\right)If=a\sqrt{7}+b
12 ga 11-4\sqrt{7} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(132I-48\sqrt{7}I\right)f=a\sqrt{7}+b
132-48\sqrt{7} ga I ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
132If-48\sqrt{7}If=a\sqrt{7}+b
132I-48\sqrt{7}I ga f ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(132f-48\sqrt{7}f\right)I=a\sqrt{7}+b
I'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(-48\sqrt{7}f+132f\right)I=\sqrt{7}a+b
Tenglama standart shaklda.
\frac{\left(-48\sqrt{7}f+132f\right)I}{-48\sqrt{7}f+132f}=\frac{\sqrt{7}a+b}{-48\sqrt{7}f+132f}
Ikki tarafini 132f-48\sqrt{7}f ga bo‘ling.
I=\frac{\sqrt{7}a+b}{-48\sqrt{7}f+132f}
132f-48\sqrt{7}f ga bo'lish 132f-48\sqrt{7}f ga ko'paytirishni bekor qiladi.
I=\frac{\left(4\sqrt{7}+11\right)\left(\sqrt{7}a+b\right)}{108f}
a\sqrt{7}+b ni 132f-48\sqrt{7}f ga bo'lish.
36If\times \frac{\left(\sqrt{7}-2\right)\left(\sqrt{7}-2\right)}{\left(\sqrt{7}+2\right)\left(\sqrt{7}-2\right)}=a\sqrt{7}+b
\frac{\sqrt{7}-2}{\sqrt{7}+2} maxrajini \sqrt{7}-2 orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
36If\times \frac{\left(\sqrt{7}-2\right)\left(\sqrt{7}-2\right)}{\left(\sqrt{7}\right)^{2}-2^{2}}=a\sqrt{7}+b
Hisoblang: \left(\sqrt{7}+2\right)\left(\sqrt{7}-2\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
36If\times \frac{\left(\sqrt{7}-2\right)\left(\sqrt{7}-2\right)}{7-4}=a\sqrt{7}+b
\sqrt{7} kvadratini chiqarish. 2 kvadratini chiqarish.
36If\times \frac{\left(\sqrt{7}-2\right)\left(\sqrt{7}-2\right)}{3}=a\sqrt{7}+b
3 olish uchun 7 dan 4 ni ayirish.
36If\times \frac{\left(\sqrt{7}-2\right)^{2}}{3}=a\sqrt{7}+b
\left(\sqrt{7}-2\right)^{2} hosil qilish uchun \sqrt{7}-2 va \sqrt{7}-2 ni ko'paytirish.
36If\times \frac{\left(\sqrt{7}\right)^{2}-4\sqrt{7}+4}{3}=a\sqrt{7}+b
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(\sqrt{7}-2\right)^{2} kengaytirilishi uchun ishlating.
36If\times \frac{7-4\sqrt{7}+4}{3}=a\sqrt{7}+b
\sqrt{7} kvadrati – 7.
36If\times \frac{11-4\sqrt{7}}{3}=a\sqrt{7}+b
11 olish uchun 7 va 4'ni qo'shing.
12\left(11-4\sqrt{7}\right)If=a\sqrt{7}+b
36 va 3 ichida eng katta umumiy 3 faktorini bekor qiling.
\left(132-48\sqrt{7}\right)If=a\sqrt{7}+b
12 ga 11-4\sqrt{7} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(132I-48\sqrt{7}I\right)f=a\sqrt{7}+b
132-48\sqrt{7} ga I ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
132If-48\sqrt{7}If=a\sqrt{7}+b
132I-48\sqrt{7}I ga f ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(132f-48\sqrt{7}f\right)I=a\sqrt{7}+b
I'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(-48\sqrt{7}f+132f\right)I=\sqrt{7}a+b
Tenglama standart shaklda.
\frac{\left(-48\sqrt{7}f+132f\right)I}{-48\sqrt{7}f+132f}=\frac{\sqrt{7}a+b}{-48\sqrt{7}f+132f}
Ikki tarafini 132f-48\sqrt{7}f ga bo‘ling.
I=\frac{\sqrt{7}a+b}{-48\sqrt{7}f+132f}
132f-48\sqrt{7}f ga bo'lish 132f-48\sqrt{7}f ga ko'paytirishni bekor qiladi.
I=\frac{\left(4\sqrt{7}+11\right)\left(\sqrt{7}a+b\right)}{108f}
a\sqrt{7}+b ni 132f-48\sqrt{7}f ga bo'lish.
36If\times \frac{\left(\sqrt{7}-2\right)\left(\sqrt{7}-2\right)}{\left(\sqrt{7}+2\right)\left(\sqrt{7}-2\right)}=a\sqrt{7}+b
\frac{\sqrt{7}-2}{\sqrt{7}+2} maxrajini \sqrt{7}-2 orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
36If\times \frac{\left(\sqrt{7}-2\right)\left(\sqrt{7}-2\right)}{\left(\sqrt{7}\right)^{2}-2^{2}}=a\sqrt{7}+b
Hisoblang: \left(\sqrt{7}+2\right)\left(\sqrt{7}-2\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
36If\times \frac{\left(\sqrt{7}-2\right)\left(\sqrt{7}-2\right)}{7-4}=a\sqrt{7}+b
\sqrt{7} kvadratini chiqarish. 2 kvadratini chiqarish.
36If\times \frac{\left(\sqrt{7}-2\right)\left(\sqrt{7}-2\right)}{3}=a\sqrt{7}+b
3 olish uchun 7 dan 4 ni ayirish.
36If\times \frac{\left(\sqrt{7}-2\right)^{2}}{3}=a\sqrt{7}+b
\left(\sqrt{7}-2\right)^{2} hosil qilish uchun \sqrt{7}-2 va \sqrt{7}-2 ni ko'paytirish.
36If\times \frac{\left(\sqrt{7}\right)^{2}-4\sqrt{7}+4}{3}=a\sqrt{7}+b
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(\sqrt{7}-2\right)^{2} kengaytirilishi uchun ishlating.
36If\times \frac{7-4\sqrt{7}+4}{3}=a\sqrt{7}+b
\sqrt{7} kvadrati – 7.
36If\times \frac{11-4\sqrt{7}}{3}=a\sqrt{7}+b
11 olish uchun 7 va 4'ni qo'shing.
12\left(11-4\sqrt{7}\right)If=a\sqrt{7}+b
36 va 3 ichida eng katta umumiy 3 faktorini bekor qiling.
\left(132-48\sqrt{7}\right)If=a\sqrt{7}+b
12 ga 11-4\sqrt{7} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(132I-48\sqrt{7}I\right)f=a\sqrt{7}+b
132-48\sqrt{7} ga I ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
132If-48\sqrt{7}If=a\sqrt{7}+b
132I-48\sqrt{7}I ga f ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
a\sqrt{7}+b=132If-48\sqrt{7}If
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
a\sqrt{7}=132If-48\sqrt{7}If-b
Ikkala tarafdan b ni ayirish.
\sqrt{7}a=-48\sqrt{7}If+132If-b
Tenglama standart shaklda.
\frac{\sqrt{7}a}{\sqrt{7}}=\frac{-48\sqrt{7}If+132If-b}{\sqrt{7}}
Ikki tarafini \sqrt{7} ga bo‘ling.
a=\frac{-48\sqrt{7}If+132If-b}{\sqrt{7}}
\sqrt{7} ga bo'lish \sqrt{7} ga ko'paytirishni bekor qiladi.
a=\frac{\sqrt{7}\left(-48\sqrt{7}If+132If-b\right)}{7}
-b+132fI-48\sqrt{7}fI ni \sqrt{7} ga bo'lish.