\quad \text { 17 } \frac { x - 3 } { x + 3 } + \frac { x + 3 } { x - 3 } = 2 \frac { 1 } { 2 }
x uchun yechish (complex solution)
x=\frac{-3\sqrt{247}i+96}{31}\approx 3,096774194-1,520925837i
x=\frac{96+3\sqrt{247}i}{31}\approx 3,096774194+1,520925837i
Grafik
Baham ko'rish
Klipbordga nusxa olish
17\left(2x-6\right)\left(x-3\right)+\left(2x+6\right)\left(x+3\right)=\left(x^{2}-9\right)\left(2\times 2+1\right)
x qiymati -3,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2\left(x-3\right)\left(x+3\right) ga, x+3,x-3,2 ning eng kichik karralisiga ko‘paytiring.
\left(34x-102\right)\left(x-3\right)+\left(2x+6\right)\left(x+3\right)=\left(x^{2}-9\right)\left(2\times 2+1\right)
17 ga 2x-6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
34x^{2}-204x+306+\left(2x+6\right)\left(x+3\right)=\left(x^{2}-9\right)\left(2\times 2+1\right)
34x-102 ga x-3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
34x^{2}-204x+306+2x^{2}+12x+18=\left(x^{2}-9\right)\left(2\times 2+1\right)
2x+6 ga x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
36x^{2}-204x+306+12x+18=\left(x^{2}-9\right)\left(2\times 2+1\right)
36x^{2} ni olish uchun 34x^{2} va 2x^{2} ni birlashtirish.
36x^{2}-192x+306+18=\left(x^{2}-9\right)\left(2\times 2+1\right)
-192x ni olish uchun -204x va 12x ni birlashtirish.
36x^{2}-192x+324=\left(x^{2}-9\right)\left(2\times 2+1\right)
324 olish uchun 306 va 18'ni qo'shing.
36x^{2}-192x+324=\left(x^{2}-9\right)\left(4+1\right)
4 hosil qilish uchun 2 va 2 ni ko'paytirish.
36x^{2}-192x+324=\left(x^{2}-9\right)\times 5
5 olish uchun 4 va 1'ni qo'shing.
36x^{2}-192x+324=5x^{2}-45
x^{2}-9 ga 5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
36x^{2}-192x+324-5x^{2}=-45
Ikkala tarafdan 5x^{2} ni ayirish.
31x^{2}-192x+324=-45
31x^{2} ni olish uchun 36x^{2} va -5x^{2} ni birlashtirish.
31x^{2}-192x+324+45=0
45 ni ikki tarafga qo’shing.
31x^{2}-192x+369=0
369 olish uchun 324 va 45'ni qo'shing.
x=\frac{-\left(-192\right)±\sqrt{\left(-192\right)^{2}-4\times 31\times 369}}{2\times 31}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 31 ni a, -192 ni b va 369 ni c bilan almashtiring.
x=\frac{-\left(-192\right)±\sqrt{36864-4\times 31\times 369}}{2\times 31}
-192 kvadratini chiqarish.
x=\frac{-\left(-192\right)±\sqrt{36864-124\times 369}}{2\times 31}
-4 ni 31 marotabaga ko'paytirish.
x=\frac{-\left(-192\right)±\sqrt{36864-45756}}{2\times 31}
-124 ni 369 marotabaga ko'paytirish.
x=\frac{-\left(-192\right)±\sqrt{-8892}}{2\times 31}
36864 ni -45756 ga qo'shish.
x=\frac{-\left(-192\right)±6\sqrt{247}i}{2\times 31}
-8892 ning kvadrat ildizini chiqarish.
x=\frac{192±6\sqrt{247}i}{2\times 31}
-192 ning teskarisi 192 ga teng.
x=\frac{192±6\sqrt{247}i}{62}
2 ni 31 marotabaga ko'paytirish.
x=\frac{192+6\sqrt{247}i}{62}
x=\frac{192±6\sqrt{247}i}{62} tenglamasini yeching, bunda ± musbat. 192 ni 6i\sqrt{247} ga qo'shish.
x=\frac{96+3\sqrt{247}i}{31}
192+6i\sqrt{247} ni 62 ga bo'lish.
x=\frac{-6\sqrt{247}i+192}{62}
x=\frac{192±6\sqrt{247}i}{62} tenglamasini yeching, bunda ± manfiy. 192 dan 6i\sqrt{247} ni ayirish.
x=\frac{-3\sqrt{247}i+96}{31}
192-6i\sqrt{247} ni 62 ga bo'lish.
x=\frac{96+3\sqrt{247}i}{31} x=\frac{-3\sqrt{247}i+96}{31}
Tenglama yechildi.
17\left(2x-6\right)\left(x-3\right)+\left(2x+6\right)\left(x+3\right)=\left(x^{2}-9\right)\left(2\times 2+1\right)
x qiymati -3,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2\left(x-3\right)\left(x+3\right) ga, x+3,x-3,2 ning eng kichik karralisiga ko‘paytiring.
\left(34x-102\right)\left(x-3\right)+\left(2x+6\right)\left(x+3\right)=\left(x^{2}-9\right)\left(2\times 2+1\right)
17 ga 2x-6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
34x^{2}-204x+306+\left(2x+6\right)\left(x+3\right)=\left(x^{2}-9\right)\left(2\times 2+1\right)
34x-102 ga x-3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
34x^{2}-204x+306+2x^{2}+12x+18=\left(x^{2}-9\right)\left(2\times 2+1\right)
2x+6 ga x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
36x^{2}-204x+306+12x+18=\left(x^{2}-9\right)\left(2\times 2+1\right)
36x^{2} ni olish uchun 34x^{2} va 2x^{2} ni birlashtirish.
36x^{2}-192x+306+18=\left(x^{2}-9\right)\left(2\times 2+1\right)
-192x ni olish uchun -204x va 12x ni birlashtirish.
36x^{2}-192x+324=\left(x^{2}-9\right)\left(2\times 2+1\right)
324 olish uchun 306 va 18'ni qo'shing.
36x^{2}-192x+324=\left(x^{2}-9\right)\left(4+1\right)
4 hosil qilish uchun 2 va 2 ni ko'paytirish.
36x^{2}-192x+324=\left(x^{2}-9\right)\times 5
5 olish uchun 4 va 1'ni qo'shing.
36x^{2}-192x+324=5x^{2}-45
x^{2}-9 ga 5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
36x^{2}-192x+324-5x^{2}=-45
Ikkala tarafdan 5x^{2} ni ayirish.
31x^{2}-192x+324=-45
31x^{2} ni olish uchun 36x^{2} va -5x^{2} ni birlashtirish.
31x^{2}-192x=-45-324
Ikkala tarafdan 324 ni ayirish.
31x^{2}-192x=-369
-369 olish uchun -45 dan 324 ni ayirish.
\frac{31x^{2}-192x}{31}=-\frac{369}{31}
Ikki tarafini 31 ga bo‘ling.
x^{2}-\frac{192}{31}x=-\frac{369}{31}
31 ga bo'lish 31 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{192}{31}x+\left(-\frac{96}{31}\right)^{2}=-\frac{369}{31}+\left(-\frac{96}{31}\right)^{2}
-\frac{192}{31} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{96}{31} olish uchun. Keyin, -\frac{96}{31} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{192}{31}x+\frac{9216}{961}=-\frac{369}{31}+\frac{9216}{961}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{96}{31} kvadratini chiqarish.
x^{2}-\frac{192}{31}x+\frac{9216}{961}=-\frac{2223}{961}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{369}{31} ni \frac{9216}{961} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{96}{31}\right)^{2}=-\frac{2223}{961}
x^{2}-\frac{192}{31}x+\frac{9216}{961} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{96}{31}\right)^{2}}=\sqrt{-\frac{2223}{961}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{96}{31}=\frac{3\sqrt{247}i}{31} x-\frac{96}{31}=-\frac{3\sqrt{247}i}{31}
Qisqartirish.
x=\frac{96+3\sqrt{247}i}{31} x=\frac{-3\sqrt{247}i+96}{31}
\frac{96}{31} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}