Asosiy tarkibga oʻtish
r uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\pi r^{2}}{\pi }=\frac{199}{\pi }
Ikki tarafini \pi ga bo‘ling.
r^{2}=\frac{199}{\pi }
\pi ga bo'lish \pi ga ko'paytirishni bekor qiladi.
r=\frac{199}{\sqrt{199\pi }} r=-\frac{199}{\sqrt{199\pi }}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
\pi r^{2}-199=0
Ikkala tarafdan 199 ni ayirish.
r=\frac{0±\sqrt{0^{2}-4\pi \left(-199\right)}}{2\pi }
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \pi ni a, 0 ni b va -199 ni c bilan almashtiring.
r=\frac{0±\sqrt{-4\pi \left(-199\right)}}{2\pi }
0 kvadratini chiqarish.
r=\frac{0±\sqrt{\left(-4\pi \right)\left(-199\right)}}{2\pi }
-4 ni \pi marotabaga ko'paytirish.
r=\frac{0±\sqrt{796\pi }}{2\pi }
-4\pi ni -199 marotabaga ko'paytirish.
r=\frac{0±2\sqrt{199\pi }}{2\pi }
796\pi ning kvadrat ildizini chiqarish.
r=\frac{199}{\sqrt{199\pi }}
r=\frac{0±2\sqrt{199\pi }}{2\pi } tenglamasini yeching, bunda ± musbat.
r=-\frac{199}{\sqrt{199\pi }}
r=\frac{0±2\sqrt{199\pi }}{2\pi } tenglamasini yeching, bunda ± manfiy.
r=\frac{199}{\sqrt{199\pi }} r=-\frac{199}{\sqrt{199\pi }}
Tenglama yechildi.