r uchun yechish
r=\sqrt{\frac{199}{\pi }}\approx 7,958873498
r=-\sqrt{\frac{199}{\pi }}\approx -7,958873498
Baham ko'rish
Klipbordga nusxa olish
\frac{\pi r^{2}}{\pi }=\frac{199}{\pi }
Ikki tarafini \pi ga bo‘ling.
r^{2}=\frac{199}{\pi }
\pi ga bo'lish \pi ga ko'paytirishni bekor qiladi.
r=\frac{199}{\sqrt{199\pi }} r=-\frac{199}{\sqrt{199\pi }}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
\pi r^{2}-199=0
Ikkala tarafdan 199 ni ayirish.
r=\frac{0±\sqrt{0^{2}-4\pi \left(-199\right)}}{2\pi }
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \pi ni a, 0 ni b va -199 ni c bilan almashtiring.
r=\frac{0±\sqrt{-4\pi \left(-199\right)}}{2\pi }
0 kvadratini chiqarish.
r=\frac{0±\sqrt{\left(-4\pi \right)\left(-199\right)}}{2\pi }
-4 ni \pi marotabaga ko'paytirish.
r=\frac{0±\sqrt{796\pi }}{2\pi }
-4\pi ni -199 marotabaga ko'paytirish.
r=\frac{0±2\sqrt{199\pi }}{2\pi }
796\pi ning kvadrat ildizini chiqarish.
r=\frac{199}{\sqrt{199\pi }}
r=\frac{0±2\sqrt{199\pi }}{2\pi } tenglamasini yeching, bunda ± musbat.
r=-\frac{199}{\sqrt{199\pi }}
r=\frac{0±2\sqrt{199\pi }}{2\pi } tenglamasini yeching, bunda ± manfiy.
r=\frac{199}{\sqrt{199\pi }} r=-\frac{199}{\sqrt{199\pi }}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}