Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\pi x^{2}+3x+0=0
0 hosil qilish uchun 0 va 1415926 ni ko'paytirish.
\pi x^{2}+3x=0
Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
x\left(\pi x+3\right)=0
x omili.
x=0 x=-\frac{3}{\pi }
Tenglamani yechish uchun x=0 va \pi x+3=0 ni yeching.
\pi x^{2}+3x+0=0
0 hosil qilish uchun 0 va 1415926 ni ko'paytirish.
\pi x^{2}+3x=0
Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
x=\frac{-3±\sqrt{3^{2}}}{2\pi }
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \pi ni a, 3 ni b va 0 ni c bilan almashtiring.
x=\frac{-3±3}{2\pi }
3^{2} ning kvadrat ildizini chiqarish.
x=\frac{0}{2\pi }
x=\frac{-3±3}{2\pi } tenglamasini yeching, bunda ± musbat. -3 ni 3 ga qo'shish.
x=0
0 ni 2\pi ga bo'lish.
x=-\frac{6}{2\pi }
x=\frac{-3±3}{2\pi } tenglamasini yeching, bunda ± manfiy. -3 dan 3 ni ayirish.
x=-\frac{3}{\pi }
-6 ni 2\pi ga bo'lish.
x=0 x=-\frac{3}{\pi }
Tenglama yechildi.
\pi x^{2}+3x+0=0
0 hosil qilish uchun 0 va 1415926 ni ko'paytirish.
\pi x^{2}+3x=0
Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\frac{\pi x^{2}+3x}{\pi }=\frac{0}{\pi }
Ikki tarafini \pi ga bo‘ling.
x^{2}+\frac{3}{\pi }x=\frac{0}{\pi }
\pi ga bo'lish \pi ga ko'paytirishni bekor qiladi.
x^{2}+\frac{3}{\pi }x=0
0 ni \pi ga bo'lish.
x^{2}+\frac{3}{\pi }x+\left(\frac{3}{2\pi }\right)^{2}=\left(\frac{3}{2\pi }\right)^{2}
\frac{3}{\pi } ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{2\pi } olish uchun. Keyin, \frac{3}{2\pi } ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}=\frac{9}{4\pi ^{2}}
\frac{3}{2\pi } kvadratini chiqarish.
\left(x+\frac{3}{2\pi }\right)^{2}=\frac{9}{4\pi ^{2}}
x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{2\pi }\right)^{2}}=\sqrt{\frac{9}{4\pi ^{2}}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{2\pi }=\frac{3}{2\pi } x+\frac{3}{2\pi }=-\frac{3}{2\pi }
Qisqartirish.
x=0 x=-\frac{3}{\pi }
Tenglamaning ikkala tarafidan \frac{3}{2\pi } ni ayirish.