x uchun yechish
x=-\frac{3}{\pi }\approx -0,954929659
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
\pi x^{2}+3x+0=0
0 hosil qilish uchun 0 va 1415926 ni ko'paytirish.
\pi x^{2}+3x=0
Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
x\left(\pi x+3\right)=0
x omili.
x=0 x=-\frac{3}{\pi }
Tenglamani yechish uchun x=0 va \pi x+3=0 ni yeching.
\pi x^{2}+3x+0=0
0 hosil qilish uchun 0 va 1415926 ni ko'paytirish.
\pi x^{2}+3x=0
Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
x=\frac{-3±\sqrt{3^{2}}}{2\pi }
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \pi ni a, 3 ni b va 0 ni c bilan almashtiring.
x=\frac{-3±3}{2\pi }
3^{2} ning kvadrat ildizini chiqarish.
x=\frac{0}{2\pi }
x=\frac{-3±3}{2\pi } tenglamasini yeching, bunda ± musbat. -3 ni 3 ga qo'shish.
x=0
0 ni 2\pi ga bo'lish.
x=-\frac{6}{2\pi }
x=\frac{-3±3}{2\pi } tenglamasini yeching, bunda ± manfiy. -3 dan 3 ni ayirish.
x=-\frac{3}{\pi }
-6 ni 2\pi ga bo'lish.
x=0 x=-\frac{3}{\pi }
Tenglama yechildi.
\pi x^{2}+3x+0=0
0 hosil qilish uchun 0 va 1415926 ni ko'paytirish.
\pi x^{2}+3x=0
Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\frac{\pi x^{2}+3x}{\pi }=\frac{0}{\pi }
Ikki tarafini \pi ga bo‘ling.
x^{2}+\frac{3}{\pi }x=\frac{0}{\pi }
\pi ga bo'lish \pi ga ko'paytirishni bekor qiladi.
x^{2}+\frac{3}{\pi }x=0
0 ni \pi ga bo'lish.
x^{2}+\frac{3}{\pi }x+\left(\frac{3}{2\pi }\right)^{2}=\left(\frac{3}{2\pi }\right)^{2}
\frac{3}{\pi } ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{2\pi } olish uchun. Keyin, \frac{3}{2\pi } ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}=\frac{9}{4\pi ^{2}}
\frac{3}{2\pi } kvadratini chiqarish.
\left(x+\frac{3}{2\pi }\right)^{2}=\frac{9}{4\pi ^{2}}
x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{2\pi }\right)^{2}}=\sqrt{\frac{9}{4\pi ^{2}}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{2\pi }=\frac{3}{2\pi } x+\frac{3}{2\pi }=-\frac{3}{2\pi }
Qisqartirish.
x=0 x=-\frac{3}{\pi }
Tenglamaning ikkala tarafidan \frac{3}{2\pi } ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}