N uchun yechish
N=\frac{5\sqrt{37946}Cϕ}{1693116m^{2}}
C\neq 0\text{ and }m\neq 0
C uchun yechish
\left\{\begin{matrix}C=\frac{846558\sqrt{37946}Nm^{2}}{94865ϕ}\text{, }&m\neq 0\text{ and }N\neq 0\text{ and }ϕ\neq 0\\C\neq 0\text{, }&m\neq 0\text{ and }ϕ=0\text{ and }N=0\end{matrix}\right,
Baham ko'rish
Klipbordga nusxa olish
ϕ=55512000NC^{-1}\times 10^{-4}m^{2}\cos(\arctan(\frac{185\times 10^{-2}m}{\frac{122}{2}\times 10^{-2}m}))
55512000 hosil qilish uchun 4500 va 12336 ni ko'paytirish.
ϕ=55512000NC^{-1}\times \frac{1}{10000}m^{2}\cos(\arctan(\frac{185\times 10^{-2}m}{\frac{122}{2}\times 10^{-2}m}))
-4 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{10000} ni qiymatni oling.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{185\times 10^{-2}m}{\frac{122}{2}\times 10^{-2}m}))
\frac{27756}{5} hosil qilish uchun 55512000 va \frac{1}{10000} ni ko'paytirish.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{185\times \frac{1}{100}m}{\frac{122}{2}\times 10^{-2}m}))
-2 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{100} ni qiymatni oling.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{20}m}{\frac{122}{2}\times 10^{-2}m}))
\frac{37}{20} hosil qilish uchun 185 va \frac{1}{100} ni ko'paytirish.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{20}m}{61\times 10^{-2}m}))
61 ni olish uchun 122 ni 2 ga bo‘ling.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{20}m}{61\times \frac{1}{100}m}))
-2 daraja ko‘rsatkichini 10 ga hisoblang va \frac{1}{100} ni qiymatni oling.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{20}m}{\frac{61}{100}m}))
\frac{61}{100} hosil qilish uchun 61 va \frac{1}{100} ni ko'paytirish.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{20}}{\frac{61}{100}}))
Surat va maxrajdagi ikkala m ni qisqartiring.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{37}{20}\times \frac{100}{61}))
\frac{37}{20} ni \frac{61}{100} ga bo'lish \frac{37}{20} ga k'paytirish \frac{61}{100} ga qaytarish.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{185}{61}))
\frac{185}{61} hosil qilish uchun \frac{37}{20} va \frac{100}{61} ni ko'paytirish.
\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{185}{61}))=ϕ
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\frac{27756\cos(\arctan(\frac{185}{61}))m^{2}}{5C}N=ϕ
Tenglama standart shaklda.
\frac{\frac{27756\cos(\arctan(\frac{185}{61}))m^{2}}{5C}N\times 5C}{27756\cos(\arctan(\frac{185}{61}))m^{2}}=\frac{ϕ\times 5C}{27756\cos(\arctan(\frac{185}{61}))m^{2}}
Ikki tarafini \frac{27756}{5}C^{-1}m^{2}\cos(\arctan(\frac{185}{61})) ga bo‘ling.
N=\frac{ϕ\times 5C}{27756\cos(\arctan(\frac{185}{61}))m^{2}}
\frac{27756}{5}C^{-1}m^{2}\cos(\arctan(\frac{185}{61})) ga bo'lish \frac{27756}{5}C^{-1}m^{2}\cos(\arctan(\frac{185}{61})) ga ko'paytirishni bekor qiladi.
N=\frac{5\sqrt{37946}Cϕ}{1693116m^{2}}
ϕ ni \frac{27756}{5}C^{-1}m^{2}\cos(\arctan(\frac{185}{61})) ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}