Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
g uchun yechish
Tick mark Image
Grafik

Baham ko'rish

3\cot(g)\left(2x-\pi \right)=3\cot(g)\left(x+\frac{\pi }{3}\right)
Tenglamaning ikkala tarafini 3 ga ko'paytirish.
6\cot(g)x-3\cot(g)\pi =3\cot(g)\left(x+\frac{\pi }{3}\right)
3\cot(g) ga 2x-\pi ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6\cot(g)x-3\cot(g)\pi =3\cot(g)x+3\cot(g)\times \frac{\pi }{3}
3\cot(g) ga x+\frac{\pi }{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6\cot(g)x-3\cot(g)\pi =3\cot(g)x+\frac{3\pi }{3}\cot(g)
3\times \frac{\pi }{3} ni yagona kasrga aylantiring.
6\cot(g)x-3\cot(g)\pi =3\cot(g)x+\pi \cot(g)
3 va 3 ni qisqartiring.
6\cot(g)x-3\cot(g)\pi -3\cot(g)x=\pi \cot(g)
Ikkala tarafdan 3\cot(g)x ni ayirish.
3\cot(g)x-3\cot(g)\pi =\pi \cot(g)
3\cot(g)x ni olish uchun 6\cot(g)x va -3\cot(g)x ni birlashtirish.
3\cot(g)x=\pi \cot(g)+3\cot(g)\pi
3\cot(g)\pi ni ikki tarafga qo’shing.
3\cot(g)x=4\pi \cot(g)
4\pi \cot(g) ni olish uchun \pi \cot(g) va 3\cot(g)\pi ni birlashtirish.
\frac{3\cot(g)x}{3\cot(g)}=\frac{4\pi \cot(g)}{3\cot(g)}
Ikki tarafini 3\cot(g) ga bo‘ling.
x=\frac{4\pi \cot(g)}{3\cot(g)}
3\cot(g) ga bo'lish 3\cot(g) ga ko'paytirishni bekor qiladi.
x=\frac{4\pi }{3}
4\pi \cot(g) ni 3\cot(g) ga bo'lish.