c uchun yechish
c=-\frac{12}{g_{x}o}
g_{x}\neq 0\text{ and }o\neq 0
g_x uchun yechish
g_{x}=-\frac{12}{co}
o\neq 0\text{ and }c\neq 0
Baham ko'rish
Klipbordga nusxa olish
\frac{g_{x}o}{8}c=-\frac{3}{2}
Tenglama standart shaklda.
\frac{8\times \frac{g_{x}o}{8}c}{g_{x}o}=\frac{-\frac{3}{2}\times 8}{g_{x}o}
Ikki tarafini \frac{1}{8}og_{x} ga bo‘ling.
c=\frac{-\frac{3}{2}\times 8}{g_{x}o}
\frac{1}{8}og_{x} ga bo'lish \frac{1}{8}og_{x} ga ko'paytirishni bekor qiladi.
c=-\frac{12}{g_{x}o}
-\frac{3}{2} ni \frac{1}{8}og_{x} ga bo'lish.
\frac{co}{8}g_{x}=-\frac{3}{2}
Tenglama standart shaklda.
\frac{8\times \frac{co}{8}g_{x}}{co}=\frac{-\frac{3}{2}\times 8}{co}
Ikki tarafini \frac{1}{8}co ga bo‘ling.
g_{x}=\frac{-\frac{3}{2}\times 8}{co}
\frac{1}{8}co ga bo'lish \frac{1}{8}co ga ko'paytirishni bekor qiladi.
g_{x}=-\frac{12}{co}
-\frac{3}{2} ni \frac{1}{8}co ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}