Asosiy tarkibga oʻtish
I uchun yechish (complex solution)
Tick mark Image
I uchun yechish
Tick mark Image
R uchun yechish (complex solution)
Tick mark Image
R uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

IRR\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Tenglamaning ikkala tarafini \left(r+1\right)^{2} ga ko'paytirish.
IR^{2}\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
R^{2} hosil qilish uchun R va R ni ko'paytirish.
IR^{2}\left(r^{2}+2r+1\right)=22000+\left(r+1\right)^{2}\left(-18000\right)
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(r+1\right)^{2} kengaytirilishi uchun ishlating.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
IR^{2} ga r^{2}+2r+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r^{2}+2r+1\right)\left(-18000\right)
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(r+1\right)^{2} kengaytirilishi uchun ishlating.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000-18000r^{2}-36000r-18000
r^{2}+2r+1 ga -18000 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=4000-18000r^{2}-36000r
4000 olish uchun 22000 dan 18000 ni ayirish.
\left(R^{2}r^{2}+2R^{2}r+R^{2}\right)I=4000-18000r^{2}-36000r
I'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I=4000-36000r-18000r^{2}
Tenglama standart shaklda.
\frac{\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I}{R^{2}r^{2}+2rR^{2}+R^{2}}=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
Ikki tarafini R^{2}r^{2}+2rR^{2}+R^{2} ga bo‘ling.
I=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
R^{2}r^{2}+2rR^{2}+R^{2} ga bo'lish R^{2}r^{2}+2rR^{2}+R^{2} ga ko'paytirishni bekor qiladi.
I=\frac{2000\left(2-18r-9r^{2}\right)}{R^{2}\left(r+1\right)^{2}}
4000-36000r-18000r^{2} ni R^{2}r^{2}+2rR^{2}+R^{2} ga bo'lish.
IRR\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Tenglamaning ikkala tarafini \left(r+1\right)^{2} ga ko'paytirish.
IR^{2}\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
R^{2} hosil qilish uchun R va R ni ko'paytirish.
IR^{2}\left(r^{2}+2r+1\right)=22000+\left(r+1\right)^{2}\left(-18000\right)
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(r+1\right)^{2} kengaytirilishi uchun ishlating.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
IR^{2} ga r^{2}+2r+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r^{2}+2r+1\right)\left(-18000\right)
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(r+1\right)^{2} kengaytirilishi uchun ishlating.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000-18000r^{2}-36000r-18000
r^{2}+2r+1 ga -18000 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=4000-18000r^{2}-36000r
4000 olish uchun 22000 dan 18000 ni ayirish.
\left(R^{2}r^{2}+2R^{2}r+R^{2}\right)I=4000-18000r^{2}-36000r
I'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I=4000-36000r-18000r^{2}
Tenglama standart shaklda.
\frac{\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I}{R^{2}r^{2}+2rR^{2}+R^{2}}=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
Ikki tarafini R^{2}r^{2}+2rR^{2}+R^{2} ga bo‘ling.
I=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
R^{2}r^{2}+2rR^{2}+R^{2} ga bo'lish R^{2}r^{2}+2rR^{2}+R^{2} ga ko'paytirishni bekor qiladi.
I=\frac{2000\left(2-18r-9r^{2}\right)}{\left(R\left(r+1\right)\right)^{2}}
4000-18000r^{2}-36000r ni R^{2}r^{2}+2rR^{2}+R^{2} ga bo'lish.