I uchun yechish (complex solution)
\left\{\begin{matrix}I=-\frac{2000\left(9r^{2}+18r-2\right)}{\left(R\left(r+1\right)\right)^{2}}\text{, }&r\neq -1\text{ and }R\neq 0\\I\in \mathrm{C}\text{, }&\left(r=-\frac{\sqrt{11}}{3}-1\text{ or }r=\frac{\sqrt{11}}{3}-1\right)\text{ and }R=0\end{matrix}\right,
I uchun yechish
\left\{\begin{matrix}I=-\frac{2000\left(9r^{2}+18r-2\right)}{\left(R\left(r+1\right)\right)^{2}}\text{, }&r\neq -1\text{ and }R\neq 0\\I\in \mathrm{R}\text{, }&\left(r=-\frac{\sqrt{11}}{3}-1\text{ or }r=\frac{\sqrt{11}}{3}-1\right)\text{ and }R=0\end{matrix}\right,
R uchun yechish (complex solution)
\left\{\begin{matrix}R=-\frac{20iI^{-\frac{1}{2}}\sqrt{45r^{2}+90r-10}}{r+1}\text{; }R=\frac{20iI^{-\frac{1}{2}}\sqrt{45r^{2}+90r-10}}{r+1}\text{, }&r\neq -1\text{ and }I\neq 0\\R\in \mathrm{C}\text{, }&\left(r=-\frac{\sqrt{11}}{3}-1\text{ or }r=\frac{\sqrt{11}}{3}-1\right)\text{ and }I=0\end{matrix}\right,
R uchun yechish
\left\{\begin{matrix}R=\frac{20\sqrt{-\frac{5\left(9r^{2}+18r-2\right)}{I}}}{|r+1|}\text{; }R=-\frac{20\sqrt{-\frac{5\left(9r^{2}+18r-2\right)}{I}}}{|r+1|}\text{, }&\left(I<0\text{ or }r\leq \frac{\sqrt{11}}{3}-1\right)\text{ and }\left(I<0\text{ or }r\geq -\frac{\sqrt{11}}{3}-1\right)\text{ and }r\neq -1\text{ and }\left(I>0\text{ or }r\geq \frac{\sqrt{11}}{3}-1\text{ or }r\leq -\frac{\sqrt{11}}{3}-1\right)\text{ and }I\neq 0\\R\in \mathrm{R}\text{, }&\left(r=-\frac{\sqrt{11}}{3}-1\text{ or }r=\frac{\sqrt{11}}{3}-1\right)\text{ and }I=0\end{matrix}\right,
Baham ko'rish
Klipbordga nusxa olish
IRR\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Tenglamaning ikkala tarafini \left(r+1\right)^{2} ga ko'paytirish.
IR^{2}\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
R^{2} hosil qilish uchun R va R ni ko'paytirish.
IR^{2}\left(r^{2}+2r+1\right)=22000+\left(r+1\right)^{2}\left(-18000\right)
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(r+1\right)^{2} kengaytirilishi uchun ishlating.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
IR^{2} ga r^{2}+2r+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r^{2}+2r+1\right)\left(-18000\right)
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(r+1\right)^{2} kengaytirilishi uchun ishlating.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000-18000r^{2}-36000r-18000
r^{2}+2r+1 ga -18000 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=4000-18000r^{2}-36000r
4000 olish uchun 22000 dan 18000 ni ayirish.
\left(R^{2}r^{2}+2R^{2}r+R^{2}\right)I=4000-18000r^{2}-36000r
I'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I=4000-36000r-18000r^{2}
Tenglama standart shaklda.
\frac{\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I}{R^{2}r^{2}+2rR^{2}+R^{2}}=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
Ikki tarafini R^{2}r^{2}+2rR^{2}+R^{2} ga bo‘ling.
I=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
R^{2}r^{2}+2rR^{2}+R^{2} ga bo'lish R^{2}r^{2}+2rR^{2}+R^{2} ga ko'paytirishni bekor qiladi.
I=\frac{2000\left(2-18r-9r^{2}\right)}{R^{2}\left(r+1\right)^{2}}
4000-36000r-18000r^{2} ni R^{2}r^{2}+2rR^{2}+R^{2} ga bo'lish.
IRR\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Tenglamaning ikkala tarafini \left(r+1\right)^{2} ga ko'paytirish.
IR^{2}\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
R^{2} hosil qilish uchun R va R ni ko'paytirish.
IR^{2}\left(r^{2}+2r+1\right)=22000+\left(r+1\right)^{2}\left(-18000\right)
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(r+1\right)^{2} kengaytirilishi uchun ishlating.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
IR^{2} ga r^{2}+2r+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r^{2}+2r+1\right)\left(-18000\right)
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(r+1\right)^{2} kengaytirilishi uchun ishlating.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000-18000r^{2}-36000r-18000
r^{2}+2r+1 ga -18000 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=4000-18000r^{2}-36000r
4000 olish uchun 22000 dan 18000 ni ayirish.
\left(R^{2}r^{2}+2R^{2}r+R^{2}\right)I=4000-18000r^{2}-36000r
I'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I=4000-36000r-18000r^{2}
Tenglama standart shaklda.
\frac{\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I}{R^{2}r^{2}+2rR^{2}+R^{2}}=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
Ikki tarafini R^{2}r^{2}+2rR^{2}+R^{2} ga bo‘ling.
I=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
R^{2}r^{2}+2rR^{2}+R^{2} ga bo'lish R^{2}r^{2}+2rR^{2}+R^{2} ga ko'paytirishni bekor qiladi.
I=\frac{2000\left(2-18r-9r^{2}\right)}{\left(R\left(r+1\right)\right)^{2}}
4000-18000r^{2}-36000r ni R^{2}r^{2}+2rR^{2}+R^{2} ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}