\left( 68+2d \right) (68+d) = 144
d uchun yechish
d=-70
d=-32
Baham ko'rish
Klipbordga nusxa olish
4624+204d+2d^{2}=144
68+2d ga 68+d ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
4624+204d+2d^{2}-144=0
Ikkala tarafdan 144 ni ayirish.
4480+204d+2d^{2}=0
4480 olish uchun 4624 dan 144 ni ayirish.
2d^{2}+204d+4480=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
d=\frac{-204±\sqrt{204^{2}-4\times 2\times 4480}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 204 ni b va 4480 ni c bilan almashtiring.
d=\frac{-204±\sqrt{41616-4\times 2\times 4480}}{2\times 2}
204 kvadratini chiqarish.
d=\frac{-204±\sqrt{41616-8\times 4480}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
d=\frac{-204±\sqrt{41616-35840}}{2\times 2}
-8 ni 4480 marotabaga ko'paytirish.
d=\frac{-204±\sqrt{5776}}{2\times 2}
41616 ni -35840 ga qo'shish.
d=\frac{-204±76}{2\times 2}
5776 ning kvadrat ildizini chiqarish.
d=\frac{-204±76}{4}
2 ni 2 marotabaga ko'paytirish.
d=-\frac{128}{4}
d=\frac{-204±76}{4} tenglamasini yeching, bunda ± musbat. -204 ni 76 ga qo'shish.
d=-32
-128 ni 4 ga bo'lish.
d=-\frac{280}{4}
d=\frac{-204±76}{4} tenglamasini yeching, bunda ± manfiy. -204 dan 76 ni ayirish.
d=-70
-280 ni 4 ga bo'lish.
d=-32 d=-70
Tenglama yechildi.
4624+204d+2d^{2}=144
68+2d ga 68+d ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
204d+2d^{2}=144-4624
Ikkala tarafdan 4624 ni ayirish.
204d+2d^{2}=-4480
-4480 olish uchun 144 dan 4624 ni ayirish.
2d^{2}+204d=-4480
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{2d^{2}+204d}{2}=-\frac{4480}{2}
Ikki tarafini 2 ga bo‘ling.
d^{2}+\frac{204}{2}d=-\frac{4480}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
d^{2}+102d=-\frac{4480}{2}
204 ni 2 ga bo'lish.
d^{2}+102d=-2240
-4480 ni 2 ga bo'lish.
d^{2}+102d+51^{2}=-2240+51^{2}
102 ni bo‘lish, x shartining koeffitsienti, 2 ga 51 olish uchun. Keyin, 51 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
d^{2}+102d+2601=-2240+2601
51 kvadratini chiqarish.
d^{2}+102d+2601=361
-2240 ni 2601 ga qo'shish.
\left(d+51\right)^{2}=361
d^{2}+102d+2601 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(d+51\right)^{2}}=\sqrt{361}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
d+51=19 d+51=-19
Qisqartirish.
d=-32 d=-70
Tenglamaning ikkala tarafidan 51 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}