Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}+x-15=15-6x
2x-5 ga x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}+x-15-15=-6x
Ikkala tarafdan 15 ni ayirish.
2x^{2}+x-30=-6x
-30 olish uchun -15 dan 15 ni ayirish.
2x^{2}+x-30+6x=0
6x ni ikki tarafga qo’shing.
2x^{2}+7x-30=0
7x ni olish uchun x va 6x ni birlashtirish.
x=\frac{-7±\sqrt{7^{2}-4\times 2\left(-30\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 7 ni b va -30 ni c bilan almashtiring.
x=\frac{-7±\sqrt{49-4\times 2\left(-30\right)}}{2\times 2}
7 kvadratini chiqarish.
x=\frac{-7±\sqrt{49-8\left(-30\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{49+240}}{2\times 2}
-8 ni -30 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{289}}{2\times 2}
49 ni 240 ga qo'shish.
x=\frac{-7±17}{2\times 2}
289 ning kvadrat ildizini chiqarish.
x=\frac{-7±17}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{10}{4}
x=\frac{-7±17}{4} tenglamasini yeching, bunda ± musbat. -7 ni 17 ga qo'shish.
x=\frac{5}{2}
\frac{10}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{24}{4}
x=\frac{-7±17}{4} tenglamasini yeching, bunda ± manfiy. -7 dan 17 ni ayirish.
x=-6
-24 ni 4 ga bo'lish.
x=\frac{5}{2} x=-6
Tenglama yechildi.
2x^{2}+x-15=15-6x
2x-5 ga x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}+x-15+6x=15
6x ni ikki tarafga qo’shing.
2x^{2}+7x-15=15
7x ni olish uchun x va 6x ni birlashtirish.
2x^{2}+7x=15+15
15 ni ikki tarafga qo’shing.
2x^{2}+7x=30
30 olish uchun 15 va 15'ni qo'shing.
\frac{2x^{2}+7x}{2}=\frac{30}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{7}{2}x=\frac{30}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{7}{2}x=15
30 ni 2 ga bo'lish.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=15+\left(\frac{7}{4}\right)^{2}
\frac{7}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{7}{4} olish uchun. Keyin, \frac{7}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{7}{2}x+\frac{49}{16}=15+\frac{49}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{7}{4} kvadratini chiqarish.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{289}{16}
15 ni \frac{49}{16} ga qo'shish.
\left(x+\frac{7}{4}\right)^{2}=\frac{289}{16}
x^{2}+\frac{7}{2}x+\frac{49}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{289}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{7}{4}=\frac{17}{4} x+\frac{7}{4}=-\frac{17}{4}
Qisqartirish.
x=\frac{5}{2} x=-6
Tenglamaning ikkala tarafidan \frac{7}{4} ni ayirish.