Asosiy tarkibga oʻtish
w uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4w^{2}+96w+540+576=0
2w+18 ga 2w+30 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
4w^{2}+96w+1116=0
1116 olish uchun 540 va 576'ni qo'shing.
w=\frac{-96±\sqrt{96^{2}-4\times 4\times 1116}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, 96 ni b va 1116 ni c bilan almashtiring.
w=\frac{-96±\sqrt{9216-4\times 4\times 1116}}{2\times 4}
96 kvadratini chiqarish.
w=\frac{-96±\sqrt{9216-16\times 1116}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
w=\frac{-96±\sqrt{9216-17856}}{2\times 4}
-16 ni 1116 marotabaga ko'paytirish.
w=\frac{-96±\sqrt{-8640}}{2\times 4}
9216 ni -17856 ga qo'shish.
w=\frac{-96±24\sqrt{15}i}{2\times 4}
-8640 ning kvadrat ildizini chiqarish.
w=\frac{-96±24\sqrt{15}i}{8}
2 ni 4 marotabaga ko'paytirish.
w=\frac{-96+24\sqrt{15}i}{8}
w=\frac{-96±24\sqrt{15}i}{8} tenglamasini yeching, bunda ± musbat. -96 ni 24i\sqrt{15} ga qo'shish.
w=-12+3\sqrt{15}i
-96+24i\sqrt{15} ni 8 ga bo'lish.
w=\frac{-24\sqrt{15}i-96}{8}
w=\frac{-96±24\sqrt{15}i}{8} tenglamasini yeching, bunda ± manfiy. -96 dan 24i\sqrt{15} ni ayirish.
w=-3\sqrt{15}i-12
-96-24i\sqrt{15} ni 8 ga bo'lish.
w=-12+3\sqrt{15}i w=-3\sqrt{15}i-12
Tenglama yechildi.
4w^{2}+96w+540+576=0
2w+18 ga 2w+30 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
4w^{2}+96w+1116=0
1116 olish uchun 540 va 576'ni qo'shing.
4w^{2}+96w=-1116
Ikkala tarafdan 1116 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{4w^{2}+96w}{4}=-\frac{1116}{4}
Ikki tarafini 4 ga bo‘ling.
w^{2}+\frac{96}{4}w=-\frac{1116}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
w^{2}+24w=-\frac{1116}{4}
96 ni 4 ga bo'lish.
w^{2}+24w=-279
-1116 ni 4 ga bo'lish.
w^{2}+24w+12^{2}=-279+12^{2}
24 ni bo‘lish, x shartining koeffitsienti, 2 ga 12 olish uchun. Keyin, 12 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
w^{2}+24w+144=-279+144
12 kvadratini chiqarish.
w^{2}+24w+144=-135
-279 ni 144 ga qo'shish.
\left(w+12\right)^{2}=-135
w^{2}+24w+144 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(w+12\right)^{2}}=\sqrt{-135}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
w+12=3\sqrt{15}i w+12=-3\sqrt{15}i
Qisqartirish.
w=-12+3\sqrt{15}i w=-3\sqrt{15}i-12
Tenglamaning ikkala tarafidan 12 ni ayirish.