k uchun yechish
k=\frac{3x^{2}}{2}+x+1
x uchun yechish (complex solution)
x=\frac{\sqrt{6k-5}-1}{3}
x=\frac{-\sqrt{6k-5}-1}{3}
x uchun yechish
x=\frac{\sqrt{6k-5}-1}{3}
x=\frac{-\sqrt{6k-5}-1}{3}\text{, }k\geq \frac{5}{6}
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(1-\left(-\frac{1}{2}\right)\right)x^{2}+x+1-k=0
\frac{-1}{2} kasri manfiy belgini olib tashlash bilan -\frac{1}{2} sifatida qayta yozilishi mumkin.
\left(1+\frac{1}{2}\right)x^{2}+x+1-k=0
-\frac{1}{2} ning teskarisi \frac{1}{2} ga teng.
\frac{3}{2}x^{2}+x+1-k=0
\frac{3}{2} olish uchun 1 va \frac{1}{2}'ni qo'shing.
x+1-k=-\frac{3}{2}x^{2}
Ikkala tarafdan \frac{3}{2}x^{2} ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
1-k=-\frac{3}{2}x^{2}-x
Ikkala tarafdan x ni ayirish.
-k=-\frac{3}{2}x^{2}-x-1
Ikkala tarafdan 1 ni ayirish.
-k=-\frac{3x^{2}}{2}-x-1
Tenglama standart shaklda.
\frac{-k}{-1}=\frac{-\frac{3x^{2}}{2}-x-1}{-1}
Ikki tarafini -1 ga bo‘ling.
k=\frac{-\frac{3x^{2}}{2}-x-1}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
k=\frac{3x^{2}}{2}+x+1
-\frac{3x^{2}}{2}-x-1 ni -1 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}