Baholash
\frac{13}{10}-\frac{1}{10}i=1,3-0,1i
Ashyoviy qism
\frac{13}{10} = 1\frac{3}{10} = 1,3
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(-2+8i\right)\left(-2-6i\right)}{\left(-2+6i\right)\left(-2-6i\right)}
Ham hisoblagich, ham maxrajni maxraj kompleksiga murakkablash orqali ko'paytirish, -2-6i.
\frac{\left(-2+8i\right)\left(-2-6i\right)}{\left(-2\right)^{2}-6^{2}i^{2}}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-2+8i\right)\left(-2-6i\right)}{40}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
\frac{-2\left(-2\right)-2\times \left(-6i\right)+8i\left(-2\right)+8\left(-6\right)i^{2}}{40}
Binomlarni ko‘paytirgandek -2+8i va -2-6i murakkab sonlarni ko‘paytiring.
\frac{-2\left(-2\right)-2\times \left(-6i\right)+8i\left(-2\right)+8\left(-6\right)\left(-1\right)}{40}
Ta’rifi bo‘yicha, i^{2} – bu -1.
\frac{4+12i-16i+48}{40}
-2\left(-2\right)-2\times \left(-6i\right)+8i\left(-2\right)+8\left(-6\right)\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{4+48+\left(12-16\right)i}{40}
4+12i-16i+48 ichida real va mavhum qismlarni birlashtiring.
\frac{52-4i}{40}
4+48+\left(12-16\right)i ichida qo‘shishlarni bajaring.
\frac{13}{10}-\frac{1}{10}i
\frac{13}{10}-\frac{1}{10}i ni olish uchun 52-4i ni 40 ga bo‘ling.
Re(\frac{\left(-2+8i\right)\left(-2-6i\right)}{\left(-2+6i\right)\left(-2-6i\right)})
\frac{-2+8i}{-2+6i}ning surat va maxrajini murakkab tutash maxraj -2-6i bilan ko‘paytiring.
Re(\frac{\left(-2+8i\right)\left(-2-6i\right)}{\left(-2\right)^{2}-6^{2}i^{2}})
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-2+8i\right)\left(-2-6i\right)}{40})
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
Re(\frac{-2\left(-2\right)-2\times \left(-6i\right)+8i\left(-2\right)+8\left(-6\right)i^{2}}{40})
Binomlarni ko‘paytirgandek -2+8i va -2-6i murakkab sonlarni ko‘paytiring.
Re(\frac{-2\left(-2\right)-2\times \left(-6i\right)+8i\left(-2\right)+8\left(-6\right)\left(-1\right)}{40})
Ta’rifi bo‘yicha, i^{2} – bu -1.
Re(\frac{4+12i-16i+48}{40})
-2\left(-2\right)-2\times \left(-6i\right)+8i\left(-2\right)+8\left(-6\right)\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
Re(\frac{4+48+\left(12-16\right)i}{40})
4+12i-16i+48 ichida real va mavhum qismlarni birlashtiring.
Re(\frac{52-4i}{40})
4+48+\left(12-16\right)i ichida qo‘shishlarni bajaring.
Re(\frac{13}{10}-\frac{1}{10}i)
\frac{13}{10}-\frac{1}{10}i ni olish uchun 52-4i ni 40 ga bo‘ling.
\frac{13}{10}
\frac{13}{10}-\frac{1}{10}i ning real qismi – \frac{13}{10}.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}