Baholash
\frac{81m^{8}}{625}-\frac{256n^{8}}{81}
Kengaytirish
\frac{81m^{8}}{625}-\frac{256n^{8}}{81}
Baham ko'rish
Klipbordga nusxa olish
\left(\frac{9\times 9m^{4}}{225}-\frac{25\times 16n^{4}}{225}\right)\left(\frac{9m^{4}}{25}+\frac{16n^{4}}{9}\right)
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 25 va 9 ning eng kichik umumiy karralisi 225. \frac{9m^{4}}{25} ni \frac{9}{9} marotabaga ko'paytirish. \frac{16n^{4}}{9} ni \frac{25}{25} marotabaga ko'paytirish.
\frac{9\times 9m^{4}-25\times 16n^{4}}{225}\left(\frac{9m^{4}}{25}+\frac{16n^{4}}{9}\right)
\frac{9\times 9m^{4}}{225} va \frac{25\times 16n^{4}}{225} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{81m^{4}-400n^{4}}{225}\left(\frac{9m^{4}}{25}+\frac{16n^{4}}{9}\right)
9\times 9m^{4}-25\times 16n^{4} ichidagi ko‘paytirishlarni bajaring.
\frac{81m^{4}-400n^{4}}{225}\left(\frac{9\times 9m^{4}}{225}+\frac{25\times 16n^{4}}{225}\right)
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 25 va 9 ning eng kichik umumiy karralisi 225. \frac{9m^{4}}{25} ni \frac{9}{9} marotabaga ko'paytirish. \frac{16n^{4}}{9} ni \frac{25}{25} marotabaga ko'paytirish.
\frac{81m^{4}-400n^{4}}{225}\times \frac{9\times 9m^{4}+25\times 16n^{4}}{225}
\frac{9\times 9m^{4}}{225} va \frac{25\times 16n^{4}}{225} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{81m^{4}-400n^{4}}{225}\times \frac{81m^{4}+400n^{4}}{225}
9\times 9m^{4}+25\times 16n^{4} ichidagi ko‘paytirishlarni bajaring.
\frac{\left(81m^{4}-400n^{4}\right)\left(81m^{4}+400n^{4}\right)}{225\times 225}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{81m^{4}-400n^{4}}{225} ni \frac{81m^{4}+400n^{4}}{225} ga ko‘paytiring.
\frac{\left(81m^{4}-400n^{4}\right)\left(81m^{4}+400n^{4}\right)}{50625}
50625 hosil qilish uchun 225 va 225 ni ko'paytirish.
\frac{\left(81m^{4}\right)^{2}-\left(400n^{4}\right)^{2}}{50625}
Hisoblang: \left(81m^{4}-400n^{4}\right)\left(81m^{4}+400n^{4}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{81^{2}\left(m^{4}\right)^{2}-\left(400n^{4}\right)^{2}}{50625}
\left(81m^{4}\right)^{2} ni kengaytirish.
\frac{81^{2}m^{8}-\left(400n^{4}\right)^{2}}{50625}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 4 va 2 ni ko‘paytirib, 8 ni oling.
\frac{6561m^{8}-\left(400n^{4}\right)^{2}}{50625}
2 daraja ko‘rsatkichini 81 ga hisoblang va 6561 ni qiymatni oling.
\frac{6561m^{8}-400^{2}\left(n^{4}\right)^{2}}{50625}
\left(400n^{4}\right)^{2} ni kengaytirish.
\frac{6561m^{8}-400^{2}n^{8}}{50625}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 4 va 2 ni ko‘paytirib, 8 ni oling.
\frac{6561m^{8}-160000n^{8}}{50625}
2 daraja ko‘rsatkichini 400 ga hisoblang va 160000 ni qiymatni oling.
\left(\frac{9\times 9m^{4}}{225}-\frac{25\times 16n^{4}}{225}\right)\left(\frac{9m^{4}}{25}+\frac{16n^{4}}{9}\right)
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 25 va 9 ning eng kichik umumiy karralisi 225. \frac{9m^{4}}{25} ni \frac{9}{9} marotabaga ko'paytirish. \frac{16n^{4}}{9} ni \frac{25}{25} marotabaga ko'paytirish.
\frac{9\times 9m^{4}-25\times 16n^{4}}{225}\left(\frac{9m^{4}}{25}+\frac{16n^{4}}{9}\right)
\frac{9\times 9m^{4}}{225} va \frac{25\times 16n^{4}}{225} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{81m^{4}-400n^{4}}{225}\left(\frac{9m^{4}}{25}+\frac{16n^{4}}{9}\right)
9\times 9m^{4}-25\times 16n^{4} ichidagi ko‘paytirishlarni bajaring.
\frac{81m^{4}-400n^{4}}{225}\left(\frac{9\times 9m^{4}}{225}+\frac{25\times 16n^{4}}{225}\right)
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 25 va 9 ning eng kichik umumiy karralisi 225. \frac{9m^{4}}{25} ni \frac{9}{9} marotabaga ko'paytirish. \frac{16n^{4}}{9} ni \frac{25}{25} marotabaga ko'paytirish.
\frac{81m^{4}-400n^{4}}{225}\times \frac{9\times 9m^{4}+25\times 16n^{4}}{225}
\frac{9\times 9m^{4}}{225} va \frac{25\times 16n^{4}}{225} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{81m^{4}-400n^{4}}{225}\times \frac{81m^{4}+400n^{4}}{225}
9\times 9m^{4}+25\times 16n^{4} ichidagi ko‘paytirishlarni bajaring.
\frac{\left(81m^{4}-400n^{4}\right)\left(81m^{4}+400n^{4}\right)}{225\times 225}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{81m^{4}-400n^{4}}{225} ni \frac{81m^{4}+400n^{4}}{225} ga ko‘paytiring.
\frac{\left(81m^{4}-400n^{4}\right)\left(81m^{4}+400n^{4}\right)}{50625}
50625 hosil qilish uchun 225 va 225 ni ko'paytirish.
\frac{\left(81m^{4}\right)^{2}-\left(400n^{4}\right)^{2}}{50625}
Hisoblang: \left(81m^{4}-400n^{4}\right)\left(81m^{4}+400n^{4}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{81^{2}\left(m^{4}\right)^{2}-\left(400n^{4}\right)^{2}}{50625}
\left(81m^{4}\right)^{2} ni kengaytirish.
\frac{81^{2}m^{8}-\left(400n^{4}\right)^{2}}{50625}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 4 va 2 ni ko‘paytirib, 8 ni oling.
\frac{6561m^{8}-\left(400n^{4}\right)^{2}}{50625}
2 daraja ko‘rsatkichini 81 ga hisoblang va 6561 ni qiymatni oling.
\frac{6561m^{8}-400^{2}\left(n^{4}\right)^{2}}{50625}
\left(400n^{4}\right)^{2} ni kengaytirish.
\frac{6561m^{8}-400^{2}n^{8}}{50625}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 4 va 2 ni ko‘paytirib, 8 ni oling.
\frac{6561m^{8}-160000n^{8}}{50625}
2 daraja ko‘rsatkichini 400 ga hisoblang va 160000 ni qiymatni oling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}