\left| \begin{array} { l l l } { 1 } & { 0 } & { 0 } \\ { 2 } & { 2 } & { 0 } \\ { 1 } & { 0 } & { 3 } \end{array} \right|
Baholash
6
Omil
2\times 3
Baham ko'rish
Klipbordga nusxa olish
det(\left(\begin{matrix}1&0&0\\2&2&0\\1&0&3\end{matrix}\right))
Diagonal usulidan foydalanib matritsaning aniqlovchisini topish.
\left(\begin{matrix}1&0&0&1&0\\2&2&0&2&2\\1&0&3&1&0\end{matrix}\right)
Birinchi ikki ustunni to'rtinchi va beshinchi ustun sifatida qaytarish uchun asl matritsani kengaytirish.
2\times 3=6
Pastki chap kiritmadan boshlab diagonal kamayish tarafga ko'paytirish ha koʻpaytmalarni qo'shish.
\text{true}
Pastki chap kiritmadan boshlab diagonal ko'payish tarafga koʻpaytirish va koʻpaytmalarni qoʻshish.
6
Kamayib boruvchi diagonal koʻpaytmalarning yig'indisidan ko'payib boruvchi diagonal koʻpaytmalar yig'indisini ayirish.
det(\left(\begin{matrix}1&0&0\\2&2&0\\1&0&3\end{matrix}\right))
Kichik a'zolarni kengaytirish usulidan foydalanib matritsaning aniqlovchisini topish (ko'paytiruvchilarni kengaytirish deb ham nomlanadi).
det(\left(\begin{matrix}2&0\\0&3\end{matrix}\right))
Kichik a’zolarga kengaytirish uchun birinchi satrning har bir elementini o‘zining kichik a’zosiga ko‘paytiring, qaysiki ana shu elementga ega bo‘lgan satr va ustunni yo‘q qilish orqali yaratilgan 2\times 2 matritsasining maxraji hisoblanadi, so‘ngra elementning joylashuv belgisiga ko‘paytiring.
2\times 3
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matritsasi uchun, determinant ad-bc.
6
Qisqartirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}