\left| \begin{array} { c c c } { 5 } & { 1 } & { - 5 } \\ { 3 } & { - 4 } & { 5 } \\ { - 4 } & { - 3 } & { 6 } \end{array} \right|
Baholash
42
Omil
2\times 3\times 7
Baham ko'rish
Klipbordga nusxa olish
det(\left(\begin{matrix}5&1&-5\\3&-4&5\\-4&-3&6\end{matrix}\right))
Diagonal usulidan foydalanib matritsaning aniqlovchisini topish.
\left(\begin{matrix}5&1&-5&5&1\\3&-4&5&3&-4\\-4&-3&6&-4&-3\end{matrix}\right)
Birinchi ikki ustunni to'rtinchi va beshinchi ustun sifatida qaytarish uchun asl matritsani kengaytirish.
5\left(-4\right)\times 6+5\left(-4\right)-5\times 3\left(-3\right)=-95
Pastki chap kiritmadan boshlab diagonal kamayish tarafga ko'paytirish ha koʻpaytmalarni qo'shish.
-4\left(-4\right)\left(-5\right)-3\times 5\times 5+6\times 3=-137
Pastki chap kiritmadan boshlab diagonal ko'payish tarafga koʻpaytirish va koʻpaytmalarni qoʻshish.
-95-\left(-137\right)
Kamayib boruvchi diagonal koʻpaytmalarning yig'indisidan ko'payib boruvchi diagonal koʻpaytmalar yig'indisini ayirish.
42
-95 dan -137 ni ayirish.
det(\left(\begin{matrix}5&1&-5\\3&-4&5\\-4&-3&6\end{matrix}\right))
Kichik a'zolarni kengaytirish usulidan foydalanib matritsaning aniqlovchisini topish (ko'paytiruvchilarni kengaytirish deb ham nomlanadi).
5det(\left(\begin{matrix}-4&5\\-3&6\end{matrix}\right))-det(\left(\begin{matrix}3&5\\-4&6\end{matrix}\right))-5det(\left(\begin{matrix}3&-4\\-4&-3\end{matrix}\right))
Kichik a’zolarga kengaytirish uchun birinchi satrning har bir elementini o‘zining kichik a’zosiga ko‘paytiring, qaysiki ana shu elementga ega bo‘lgan satr va ustunni yo‘q qilish orqali yaratilgan 2\times 2 matritsasining maxraji hisoblanadi, so‘ngra elementning joylashuv belgisiga ko‘paytiring.
5\left(-4\times 6-\left(-3\times 5\right)\right)-\left(3\times 6-\left(-4\times 5\right)\right)-5\left(3\left(-3\right)-\left(-4\left(-4\right)\right)\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matritsasi uchun, determinant ad-bc.
5\left(-9\right)-38-5\left(-25\right)
Qisqartirish.
42
Yakuniy natija olish uchun shartlarni qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}