\left| \begin{array} { c c c } { 43 } & { 1 } & { 6 } \\ { 35 } & { 7 } & { 4 } \\ { 17 } & { 3 } & { 2 } \end{array} \right|
Baholash
0
Omil
0
Baham ko'rish
Klipbordga nusxa olish
det(\left(\begin{matrix}43&1&6\\35&7&4\\17&3&2\end{matrix}\right))
Diagonal usulidan foydalanib matritsaning aniqlovchisini topish.
\left(\begin{matrix}43&1&6&43&1\\35&7&4&35&7\\17&3&2&17&3\end{matrix}\right)
Birinchi ikki ustunni to'rtinchi va beshinchi ustun sifatida qaytarish uchun asl matritsani kengaytirish.
43\times 7\times 2+4\times 17+6\times 35\times 3=1300
Pastki chap kiritmadan boshlab diagonal kamayish tarafga ko'paytirish ha koʻpaytmalarni qo'shish.
17\times 7\times 6+3\times 4\times 43+2\times 35=1300
Pastki chap kiritmadan boshlab diagonal ko'payish tarafga koʻpaytirish va koʻpaytmalarni qoʻshish.
1300-1300
Kamayib boruvchi diagonal koʻpaytmalarning yig'indisidan ko'payib boruvchi diagonal koʻpaytmalar yig'indisini ayirish.
0
1300 dan 1300 ni ayirish.
det(\left(\begin{matrix}43&1&6\\35&7&4\\17&3&2\end{matrix}\right))
Kichik a'zolarni kengaytirish usulidan foydalanib matritsaning aniqlovchisini topish (ko'paytiruvchilarni kengaytirish deb ham nomlanadi).
43det(\left(\begin{matrix}7&4\\3&2\end{matrix}\right))-det(\left(\begin{matrix}35&4\\17&2\end{matrix}\right))+6det(\left(\begin{matrix}35&7\\17&3\end{matrix}\right))
Kichik a’zolarga kengaytirish uchun birinchi satrning har bir elementini o‘zining kichik a’zosiga ko‘paytiring, qaysiki ana shu elementga ega bo‘lgan satr va ustunni yo‘q qilish orqali yaratilgan 2\times 2 matritsasining maxraji hisoblanadi, so‘ngra elementning joylashuv belgisiga ko‘paytiring.
43\left(7\times 2-3\times 4\right)-\left(35\times 2-17\times 4\right)+6\left(35\times 3-17\times 7\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matritsasi uchun, determinant ad-bc.
43\times 2-2+6\left(-14\right)
Qisqartirish.
0
Yakuniy natija olish uchun shartlarni qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}