\left| \begin{array} { c c c } { 3 } & { 3 } & { - 6 } \\ { - 3 } & { 0 } & { 6 } \\ { 2 } & { - 4 } & { 6 } \end{array} \right|
Baholash
90
Omil
2\times 3^{2}\times 5
Baham ko'rish
Klipbordga nusxa olish
det(\left(\begin{matrix}3&3&-6\\-3&0&6\\2&-4&6\end{matrix}\right))
Diagonal usulidan foydalanib matritsaning aniqlovchisini topish.
\left(\begin{matrix}3&3&-6&3&3\\-3&0&6&-3&0\\2&-4&6&2&-4\end{matrix}\right)
Birinchi ikki ustunni to'rtinchi va beshinchi ustun sifatida qaytarish uchun asl matritsani kengaytirish.
3\times 6\times 2-6\left(-3\right)\left(-4\right)=-36
Pastki chap kiritmadan boshlab diagonal kamayish tarafga ko'paytirish ha koʻpaytmalarni qo'shish.
-4\times 6\times 3+6\left(-3\right)\times 3=-126
Pastki chap kiritmadan boshlab diagonal ko'payish tarafga koʻpaytirish va koʻpaytmalarni qoʻshish.
-36-\left(-126\right)
Kamayib boruvchi diagonal koʻpaytmalarning yig'indisidan ko'payib boruvchi diagonal koʻpaytmalar yig'indisini ayirish.
90
-36 dan -126 ni ayirish.
det(\left(\begin{matrix}3&3&-6\\-3&0&6\\2&-4&6\end{matrix}\right))
Kichik a'zolarni kengaytirish usulidan foydalanib matritsaning aniqlovchisini topish (ko'paytiruvchilarni kengaytirish deb ham nomlanadi).
3det(\left(\begin{matrix}0&6\\-4&6\end{matrix}\right))-3det(\left(\begin{matrix}-3&6\\2&6\end{matrix}\right))-6det(\left(\begin{matrix}-3&0\\2&-4\end{matrix}\right))
Kichik a’zolarga kengaytirish uchun birinchi satrning har bir elementini o‘zining kichik a’zosiga ko‘paytiring, qaysiki ana shu elementga ega bo‘lgan satr va ustunni yo‘q qilish orqali yaratilgan 2\times 2 matritsasining maxraji hisoblanadi, so‘ngra elementning joylashuv belgisiga ko‘paytiring.
3\left(-\left(-4\times 6\right)\right)-3\left(-3\times 6-2\times 6\right)-6\left(-3\right)\left(-4\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matritsasi uchun, determinant ad-bc.
3\times 24-3\left(-30\right)-6\times 12
Qisqartirish.
90
Yakuniy natija olish uchun shartlarni qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}