\left| \begin{array} { c c c } { 265 } & { 240 } & { 219 } \\ { 240 } & { 225 } & { 198 } \\ { 219 } & { 198 } & { 181 } \end{array} \right|
Baholash
0
Omil
0
Baham ko'rish
Klipbordga nusxa olish
det(\left(\begin{matrix}265&240&219\\240&225&198\\219&198&181\end{matrix}\right))
Diagonal usulidan foydalanib matritsaning aniqlovchisini topish.
\left(\begin{matrix}265&240&219&265&240\\240&225&198&240&225\\219&198&181&219&198\end{matrix}\right)
Birinchi ikki ustunni to'rtinchi va beshinchi ustun sifatida qaytarish uchun asl matritsani kengaytirish.
265\times 225\times 181+240\times 198\times 219+219\times 240\times 198=31605885
Pastki chap kiritmadan boshlab diagonal kamayish tarafga ko'paytirish ha koʻpaytmalarni qo'shish.
219\times 225\times 219+198\times 198\times 265+181\times 240\times 240=31605885
Pastki chap kiritmadan boshlab diagonal ko'payish tarafga koʻpaytirish va koʻpaytmalarni qoʻshish.
31605885-31605885
Kamayib boruvchi diagonal koʻpaytmalarning yig'indisidan ko'payib boruvchi diagonal koʻpaytmalar yig'indisini ayirish.
0
31605885 dan 31605885 ni ayirish.
det(\left(\begin{matrix}265&240&219\\240&225&198\\219&198&181\end{matrix}\right))
Kichik a'zolarni kengaytirish usulidan foydalanib matritsaning aniqlovchisini topish (ko'paytiruvchilarni kengaytirish deb ham nomlanadi).
265det(\left(\begin{matrix}225&198\\198&181\end{matrix}\right))-240det(\left(\begin{matrix}240&198\\219&181\end{matrix}\right))+219det(\left(\begin{matrix}240&225\\219&198\end{matrix}\right))
Kichik a’zolarga kengaytirish uchun birinchi satrning har bir elementini o‘zining kichik a’zosiga ko‘paytiring, qaysiki ana shu elementga ega bo‘lgan satr va ustunni yo‘q qilish orqali yaratilgan 2\times 2 matritsasining maxraji hisoblanadi, so‘ngra elementning joylashuv belgisiga ko‘paytiring.
265\left(225\times 181-198\times 198\right)-240\left(240\times 181-219\times 198\right)+219\left(240\times 198-219\times 225\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matritsasi uchun, determinant ad-bc.
265\times 1521-240\times 78+219\left(-1755\right)
Qisqartirish.
0
Yakuniy natija olish uchun shartlarni qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}