Asosiy tarkibga oʻtish
y, x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

y-x=0
Birinchi tenglamani yeching. Ikkala tarafdan x ni ayirish.
y+x=2
Ikkinchi tenglamani yeching. x ni ikki tarafga qo’shing.
y-x=0,y+x=2
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
y-x=0
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi y ni izolyatsiyalash orqali y ni hisoblang.
y=x
x ni tenglamaning ikkala tarafiga qo'shish.
x+x=2
x ni y uchun boshqa tenglamada almashtirish, y+x=2.
2x=2
x ni x ga qo'shish.
x=1
Ikki tarafini 2 ga bo‘ling.
y=1
1 ni x uchun y=x da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz y ni bevosita yecha olasiz.
y=1,x=1
Tizim hal qilindi.
y-x=0
Birinchi tenglamani yeching. Ikkala tarafdan x ni ayirish.
y+x=2
Ikkinchi tenglamani yeching. x ni ikki tarafga qo’shing.
y-x=0,y+x=2
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\2\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}0\\2\end{matrix}\right)
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}0\\2\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}0\\2\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{-1}{1-\left(-1\right)}\\-\frac{1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}0\\2\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}0\\2\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 2\\\frac{1}{2}\times 2\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
y=1,x=1
y va x matritsa elementlarini chiqarib olish.
y-x=0
Birinchi tenglamani yeching. Ikkala tarafdan x ni ayirish.
y+x=2
Ikkinchi tenglamani yeching. x ni ikki tarafga qo’shing.
y-x=0,y+x=2
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
y-y-x-x=-2
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali y-x=0 dan y+x=2 ni ayirish.
-x-x=-2
y ni -y ga qo'shish. y va -y shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
-2x=-2
-x ni -x ga qo'shish.
x=1
Ikki tarafini -2 ga bo‘ling.
y+1=2
1 ni x uchun y+x=2 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz y ni bevosita yecha olasiz.
y=1
Tenglamaning ikkala tarafidan 1 ni ayirish.
y=1,x=1
Tizim hal qilindi.