\left\{ \begin{array} { l } { x + 2 y = 7 } \\ { 3 x - 2 y = - 3 } \end{array} \right\}
x, y uchun yechish
x=1
y=3
Grafik
Baham ko'rish
Klipbordga nusxa olish
x+2y=7,3x-2y=-3
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
x+2y=7
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi x ni izolyatsiyalash orqali x ni hisoblang.
x=-2y+7
Tenglamaning ikkala tarafidan 2y ni ayirish.
3\left(-2y+7\right)-2y=-3
-2y+7 ni x uchun boshqa tenglamada almashtirish, 3x-2y=-3.
-6y+21-2y=-3
3 ni -2y+7 marotabaga ko'paytirish.
-8y+21=-3
-6y ni -2y ga qo'shish.
-8y=-24
Tenglamaning ikkala tarafidan 21 ni ayirish.
y=3
Ikki tarafini -8 ga bo‘ling.
x=-2\times 3+7
3 ni y uchun x=-2y+7 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=-6+7
-2 ni 3 marotabaga ko'paytirish.
x=1
7 ni -6 ga qo'shish.
x=1,y=3
Tizim hal qilindi.
x+2y=7,3x-2y=-3
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}1&2\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\-3\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}1&2\\3&-2\end{matrix}\right))\left(\begin{matrix}1&2\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-2\end{matrix}\right))\left(\begin{matrix}7\\-3\end{matrix}\right)
\left(\begin{matrix}1&2\\3&-2\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-2\end{matrix}\right))\left(\begin{matrix}7\\-3\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-2\end{matrix}\right))\left(\begin{matrix}7\\-3\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-2\times 3}&-\frac{2}{-2-2\times 3}\\-\frac{3}{-2-2\times 3}&\frac{1}{-2-2\times 3}\end{matrix}\right)\left(\begin{matrix}7\\-3\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\\frac{3}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}7\\-3\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 7+\frac{1}{4}\left(-3\right)\\\frac{3}{8}\times 7-\frac{1}{8}\left(-3\right)\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
x=1,y=3
x va y matritsa elementlarini chiqarib olish.
x+2y=7,3x-2y=-3
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
3x+3\times 2y=3\times 7,3x-2y=-3
x va 3x ni teng qilish uchun birinchi tenglamaning har bir tarafida barcha shartlarni 3 ga va ikkinchining har bir tarafidagi barcha shartlarni 1 ga ko'paytiring.
3x+6y=21,3x-2y=-3
Qisqartirish.
3x-3x+6y+2y=21+3
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali 3x+6y=21 dan 3x-2y=-3 ni ayirish.
6y+2y=21+3
3x ni -3x ga qo'shish. 3x va -3x shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
8y=21+3
6y ni 2y ga qo'shish.
8y=24
21 ni 3 ga qo'shish.
y=3
Ikki tarafini 8 ga bo‘ling.
3x-2\times 3=-3
3 ni y uchun 3x-2y=-3 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
3x-6=-3
-2 ni 3 marotabaga ko'paytirish.
3x=3
6 ni tenglamaning ikkala tarafiga qo'shish.
x=1
Ikki tarafini 3 ga bo‘ling.
x=1,y=3
Tizim hal qilindi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}