Asosiy tarkibga oʻtish
x, y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x-y=-5
Ikkinchi tenglamani yeching. Ikkala tarafdan y ni ayirish.
x+2y=1,x-y=-5
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
x+2y=1
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi x ni izolyatsiyalash orqali x ni hisoblang.
x=-2y+1
Tenglamaning ikkala tarafidan 2y ni ayirish.
-2y+1-y=-5
-2y+1 ni x uchun boshqa tenglamada almashtirish, x-y=-5.
-3y+1=-5
-2y ni -y ga qo'shish.
-3y=-6
Tenglamaning ikkala tarafidan 1 ni ayirish.
y=2
Ikki tarafini -3 ga bo‘ling.
x=-2\times 2+1
2 ni y uchun x=-2y+1 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=-4+1
-2 ni 2 marotabaga ko'paytirish.
x=-3
1 ni -4 ga qo'shish.
x=-3,y=2
Tizim hal qilindi.
x-y=-5
Ikkinchi tenglamani yeching. Ikkala tarafdan y ni ayirish.
x+2y=1,x-y=-5
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}1&2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-5\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}1&2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\-5\end{matrix}\right)
\left(\begin{matrix}1&2\\1&-1\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\-5\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\-5\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2}&-\frac{2}{-1-2}\\-\frac{1}{-1-2}&\frac{1}{-1-2}\end{matrix}\right)\left(\begin{matrix}1\\-5\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{2}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}1\\-5\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}+\frac{2}{3}\left(-5\right)\\\frac{1}{3}-\frac{1}{3}\left(-5\right)\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
x=-3,y=2
x va y matritsa elementlarini chiqarib olish.
x-y=-5
Ikkinchi tenglamani yeching. Ikkala tarafdan y ni ayirish.
x+2y=1,x-y=-5
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
x-x+2y+y=1+5
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali x+2y=1 dan x-y=-5 ni ayirish.
2y+y=1+5
x ni -x ga qo'shish. x va -x shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
3y=1+5
2y ni y ga qo'shish.
3y=6
1 ni 5 ga qo'shish.
y=2
Ikki tarafini 3 ga bo‘ling.
x-2=-5
2 ni y uchun x-y=-5 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=-3
2 ni tenglamaning ikkala tarafiga qo'shish.
x=-3,y=2
Tizim hal qilindi.